Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?cootrsv

Triangular solvers with simplified interface for a sparse matrix in the coordinate format with one-based indexing (deprecated).

Syntax

void mkl_scootrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const float *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const float *x , float *y );

void mkl_dcootrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const double *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const double *x , double *y );

void mkl_ccootrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex8 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex8 *x , MKL_Complex8 *y );

void mkl_zcootrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex16 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex16 *x , MKL_Complex16 *y );

Include Files
  • mkl.h
Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.

The mkl_?cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format:

A*y = x

or

AT*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

uplo

Specifies whether the upper or low triangle of the matrix A is considered.

If uplo = 'U' or 'u', then the upper triangle of the matrix A is used.

If uplo = 'L' or 'l', then the low triangle of the matrix A is used.

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then A*y = x

If transa = 'T' or 't' or 'C' or 'c', then AT*y = x,

diag

Specifies whether A is unit triangular.

If diag = 'U' or 'u', then A is unit triangular.

If diag = 'N' or 'n', then A is not unit triangular.

m

Number of rows of the matrix A.

val

Array of length nnz, contains non-zero elements of the matrix A in the arbitrary order.

Refer to values array description in Coordinate Format for more details.

rowind

Array of length nnz, contains the row indices plus one for each non-zero element of the matrix A.

Refer to rows array description in Coordinate Format for more details.

colind

Array of length nnz, contains the column indices plus one for each non-zero element of the matrix A. Refer to columns array description in Coordinate Format for more details.

nnz

Specifies the number of non-zero element of the matrix A.

Refer to nnz description in Coordinate Format for more details.

x

Array, size is m.

On entry, the array x must contain the vector x.

Output Parameters
y

Array, size at least m.

Contains the vector y.