Visible to Intel only — GUID: GUID-39C9168B-D37A-4C6A-BC26-45041D862D78
Visible to Intel only — GUID: GUID-39C9168B-D37A-4C6A-BC26-45041D862D78
Covariance
In statistics, covariance and correlation are two of the most fundamental measures of linear dependence between two random variables. The covariance and the correlation represent the joint variability of any two features. The correlation is dimensionless, while the covariance is measured in units obtained by multiplying the units of the two features. Another important distinction is that covariance can be affected by the higher variance of one feature, while correlation removes the effect of the variances by normalizing the covariance of two features by their square-root of variances. Their usage is application-dependent. The covariance algorithm computes the following:
Means
Covariance (sample and estimated by maximum likelihood method)
Correlation
Operation |
Computational methods |
Programming Interface |
||
Mathematical formulation
Refer to Developer Guide: Covariance.
Programming Interface
All types and functions in this section are declared in the oneapi::dal::covariance namespace and are available via inclusion of the oneapi/dal/algo/covariance.hpp header file.
Descriptor
template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_default>classdescriptor
- Template Parameters
Constructors
descriptor()=default
Creates a new instance of the class with the default property values.
Properties
boolbias
Choose if result biased or not.
- Getter & Setter
-
bool get_bias() const
auto & set_bias(const bool &value)
result_option_idresult_options
Choose which results should be computed and returned.
- Getter & Setter
-
result_option_id get_result_options() const
auto & set_result_options(const result_option_id &value)
boolassume_centered
- Getter & Setter
-
bool get_assume_centered() const
auto & set_assume_centered(const bool &value)
Method tags
structdense
Tag-type that denotes dense computational method.
usingby_default=dense
Alias tag-type for the dense computational method.
Task tags
structcompute
Tag-type that parameterizes entities that are used to compute statistics.
usingby_default=compute
Alias tag-type for the compute task.
Training compute(...)
Input
template<typenameTask=task::by_default>classcompute_input
- Template Parameters
-
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
compute_input()
compute_input(consttable&data)
Creates a new instance of the class with the given data property value.
Properties
consttable&data
An table with the training data, where each row stores one feature vector. Default value: table{}.
- Getter & Setter
-
const table & get_data() const
auto & set_data(const table &value)
Result and Finalize Result
template<typenameTask=task::by_default>classcompute_result
- Template Parameters
-
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
compute_result()
Creates a new instance of the class with the default property values.
Properties
consttable&cor_matrix
The correlation matrix. Default value: table{}.
- Getter & Setter
-
const table & get_cor_matrix() const
auto & set_cor_matrix(const table &value)
consttable&cov_matrix
The covariance matrix. Default value: table{}.
- Getter & Setter
-
const table & get_cov_matrix() const
auto & set_cov_matrix(const table &value)
consttable&means
Means. Default value: table{}.
- Getter & Setter
-
const table & get_means() const
auto & set_means(const table &value)
constresult_option_id&result_options
Result options that indicates availability of the properties. Default value: default_result_options<Task>.
- Getter & Setter
-
const result_option_id & get_result_options() const
auto & set_result_options(const result_option_id &value)
Operation
template<typenameDescriptor>covariance::compute_resultcompute(constDescriptor&desc, constcovariance::compute_input&input)
- Parameters
-
desc – Covariance algorithm descriptor covariance::descriptor
input – Input data for the computing operation
- Preconditions
-
input.data.is_empty == false
Partial Training
Partial Input
template<typenameTask=task::by_default>classpartial_compute_input
Constructors
partial_compute_input()
partial_compute_input(consttable&data)
partial_compute_input(constpartial_compute_result<Task>&prev, consttable&data)
Properties
constpartial_compute_result<Task>&prev
- Getter & Setter
-
const partial_compute_result< Task > & get_prev() const
auto & set_prev(const partial_compute_result< Task > &value)
consttable&data
- Getter & Setter
-
const table & get_data() const
auto & set_data(const table &value)
Partial Result and Finalize Input
template<typenameTask=task::by_default>classpartial_compute_result
Constructors
partial_compute_result()
Properties
consttable&partial_crossproduct
The crossproduct matrix. Default value: table{}.
- Getter & Setter
-
const table & get_partial_crossproduct() const
auto & set_partial_crossproduct(const table &value)
consttable&partial_n_rows
The nobs value. Default value: table{}.
- Getter & Setter
-
const table & get_partial_n_rows() const
auto & set_partial_n_rows(const table &value)
consttable&partial_sum
Sums. Default value: table{}.
- Getter & Setter
-
const table & get_partial_sum() const
auto & set_partial_sum(const table &value)
Finalize Training
Usage Example
Computing
void run_computing(const table& data) {
const auto cov_desc = dal::covariance::descriptor{};
const auto cov_desc = dal::covariance::descriptor{}.set_result_options(
dal::covariance::result_options::cor_matrix | dal::covariance::result_options::means);
const auto result = dal::compute(cov_desc, data);
std::cout << "Means:\n" << result.get_means() << std::endl;
std::cout << "Correlation:\n" << result.get_cor_matrix() << std::endl;
}