Arria® V Avalon® Memory-Mapped (Avalon-MM) Interface for PCI Express* Solutions: User Guide
ID
683773
Date
10/25/2024
Public
1. Datasheet
2. Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
3. Parameter Settings
4. Interfaces and Signal Descriptions
5. Registers
6. Reset and Clocks
7. Interrupts for Endpoints
8. Error Handling
A. PCI Express Protocol Stack
9. Design Implementation
10. Additional Features
11. Transceiver PHY IP Reconfiguration
12. Debugging
B. Frequently Asked Questions for PCI Express
C. Lane Initialization and Reversal
D. Document Revision History
2.1. Running Platform Designer
2.2. Generating the Example Design
2.3. Running a Gate-Level Simulation
2.4. Simulating the Single DWord Design
2.5. Understanding Channel Placement Guidelines
2.6. Generating Synthesis Files
2.7. Compiling the Design in the Quartus® Prime Software
2.8. Programming a Device
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. Type 0 Configuration Space Registers
5.3. Type 1 Configuration Space Registers
5.4. PCI Express Capability Structures
5.5. Intel-Defined VSEC Registers
5.6. CvP Registers
5.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
5.8. Programming Model for Avalon-MM Root Port
5.9. Uncorrectable Internal Error Mask Register
5.10. Uncorrectable Internal Error Status Register
5.11. Correctable Internal Error Mask Register
5.12. Correctable Internal Error Status Register
5.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
5.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
5.7.1.3. PCI Express Mailbox Registers
5.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
5.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
5.7.1.6. Avalon-MM Mailbox Registers
5.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
6.1. Reset Sequence for Hard IP for PCI Express IP Core and Application Layer
Use the active-low reset_status output of the Hard IP to drive the reset of your Application Layer logic.
After pin_perst or npor is released, the Hard IP reset controller deasserts reset_status. Your Application Layer logic can then come out of reset and become operational.
Figure 27. RX Transceiver Reset Sequence
The RX transceiver reset sequence includes the following steps:
- After rx_pll_locked is asserted, the LTSSM state machine transitions from the Detect.Quiet to the Detect.Active state.
- When the pipe_phystatus pulse is asserted and pipe_rxstatus[2:0] = 3, the receiver detect operation has completed.
- The LTSSM state machine transitions from the Detect.Active state to the Polling.Active state.
- The Hard IP for PCI Express asserts rx_digitalreset. The rx_digitalreset signal is deasserted after rx_signaldetect is stable for a minimum of 3 ms.
Figure 28. TX Transceiver Reset Sequence
The TX transceiver reset sequence includes the following steps:
- After npor is deasserted, the IP core deasserts the npor_serdes input to the TX transceiver.
- The SERDES reset controller waits for pll_locked to be stable for a minimum of 127 pld_clk cycles before deasserting tx_digitalreset.
For descriptions of the available reset signals, refer to Reset Signals, Status, and Link Training Signals.