Intel® High Level Synthesis Compiler Pro Edition: Reference Manual
ID
683349
Date
1/23/2025
Public
1. Discontinuation of the Intel® HLS Compiler
2. Intel® HLS Compiler Pro Edition Reference Manual
3. Compiler
4. C Language and Library Support
5. Component Interfaces
6. Component Memories (Memory Attributes)
7. Loops in Components
8. Component Concurrency
9. Arbitrary Precision Math Support
10. Component Target Frequency
11. Systems of Tasks
12. Libraries
13. Advanced Hardware Synthesis Controls
14. Intel® High Level Synthesis Compiler Pro Edition Reference Summary
A. Advanced Math Source Code Libraries
B. Supported Math Functions
C. Cyclone® V Restrictions
D. Intel® HLS Compiler Pro Edition Reference Manual Archives
E. Document Revision History of the Intel® HLS Compiler Pro Edition Reference Manual
15. Discontinuation of the Intel® HLS Compiler
7.1. Loop Initiation Interval (ii Pragma)
7.2. Loop-Carried Dependencies (ivdep Pragma)
7.3. Loop Coalescing (loop_coalesce Pragma)
7.4. Loop Unrolling (unroll Pragma)
7.5. Loop Concurrency (max_concurrency Pragma)
7.6. Loop Iteration Speculation (speculated_iterations Pragma)
7.7. Loop Pipelining Control (disable_loop_pipelining Pragma)
7.8. Loop Interleaving Control (max_interleaving Pragma)
7.9. Loop Fusion
12.4.1.1. Integration of an RTL Module into the HLS Pipeline
12.4.1.2. RTL Module Interfaces
12.4.1.3. RTL Reset and Clock Signals
12.4.1.4. Object Manifest File Syntax
12.4.1.5. Mapping HLS Data Types to RTL Signals
12.4.1.6. HLS Emulation Models for RTL-Based Functions
12.4.1.7. Potential Incompatibility between RTL Modules and Partial Reconfiguration
12.4.1.8. Stall-Free RTL
12.4.1.9. RTL Module Restrictions and Limitations for HLS Libraries
14.1. Intel® HLS Compiler Pro Edition i++ Command-Line Arguments
14.2. Intel® HLS Compiler Pro Edition Header Files
14.3. Intel® HLS Compiler Pro Edition Compiler-Defined Preprocessor Macros
14.4. Intel® HLS Compiler Pro Edition Keywords
14.5. Intel® HLS Compiler Pro Edition Simulation API (Testbench Only)
14.6. Intel® HLS Compiler Pro Edition Component Memory Attributes
14.7. Intel® HLS Compiler Pro Edition Loop Pragmas
14.8. Intel® HLS Compiler Pro Edition Scope Pragmas
14.9. Intel® HLS Compiler Pro Edition Component Attributes
14.10. Intel® HLS Compiler Pro Edition Component Default Interfaces
14.11. Intel® HLS Compiler Pro Edition Component Invocation Interface Control Attributes
14.12. Intel® HLS Compiler Pro Edition Component Macros
14.13. Intel® HLS Compiler Pro Edition Systems of Tasks API
14.14. Intel® HLS Compiler Pro Edition Pipes API
14.15. Intel® HLS Compiler Pro Edition Streaming Input Interfaces
14.16. Intel® HLS Compiler Pro Edition Streaming Output Interfaces
14.17. Intel® HLS Compiler Pro Edition Memory-Mapped Interfaces
14.18. Intel® HLS Compiler Pro Edition Load-Store Unit Control
14.19. Intel® HLS Compiler Pro Edition Arbitrary Precision Data Types
B.1. Math Functions Provided by the math.h Header File
B.2. Math Functions Provided by the extendedmath.h Header File
B.3. Math Functions Provided by the ac_fixed_math.h Header File
B.4. Math Functions Provided by the hls_float.h Header File
B.5. Math Functions Provided by the hls_float_math.h Header File
B.6. Default Rounding Schemes and Subnormal Number Support
9.1. Declaring ac_int Data Types
The HLS compiler package includes an ac_int.h header file to provide arbitrary precision integer support in your component.
- Include the ac_int.h header file in your component in the following manner:
#ifdef __INTELFPGA_COMPILER__ #include "HLS/ac_int.h" #else #include "ref/ac_int.h" #endif
- After you include the header file, declare your ac_int variables in one of the following ways:
- Template-based declaration
- ac_int<N, true> var_name; //Signed N bit integer
- ac_int<N, false> var_name; //Unsigned N bit integer
- Predefined types up to 63 bits
- intN var_name; //Signed N bit integer
- uintN var_name; //Unsigned N bit integer
Where N is the total length of the integer in bits.Restriction:If you want to initialize an ac_int variable to a value larger than 64 bits, you must use the bit_fill or bit_fill_hex utility function. For details see "2.3.14 Methods to Fill Bits" in Mentor Graphics Algorithmic C (AC) Datatypes, which is available as <quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.
The following code example shows the use of the bit_fill or bit_fill_hex utility functions:typedef ac_int<80,false> i80_t; i80_t x; x.bit_fill_hex(“a9876543210fedcba987”); // member funtion x = ac::bit_fill_hex<i80_t>(“a9876543210fedcba987”); // global function int vec[] = { 0xa987, 0x6543210f, 0xedcba987 }; x.bit_fill(vec); // member function x = bit_fill<i80_t>(vec); // global function // inlining the constant array x.bit_fill( (int [3]) { 0xa987,0x6543210f,0xedcba987 } ); // member function x = bit_fill<i80_t>( (int [3]) { 0xa987,0x6543210f,0xedcba987 } ); // global function - Template-based declaration
For a list of supported operators and their return types, see "Chapter 2: Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes" in Mentor Graphics Algorithmic C (AC) Datatypes, which is available in the following file: <quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.