Visible to Intel only — GUID: hsi1468861028556
Ixiasoft
1. Discontinuation of the Intel® HLS Compiler
2. Intel® HLS Compiler Pro Edition Reference Manual
3. Compiler
4. C Language and Library Support
5. Component Interfaces
6. Component Memories (Memory Attributes)
7. Loops in Components
8. Component Concurrency
9. Arbitrary Precision Math Support
10. Component Target Frequency
11. Systems of Tasks
12. Libraries
13. Advanced Hardware Synthesis Controls
14. Intel® High Level Synthesis Compiler Pro Edition Reference Summary
A. Advanced Math Source Code Libraries
B. Supported Math Functions
C. Cyclone® V Restrictions
D. Intel® HLS Compiler Pro Edition Reference Manual Archives
E. Document Revision History of the Intel® HLS Compiler Pro Edition Reference Manual
15. Discontinuation of the Intel® HLS Compiler
7.1. Loop Initiation Interval (ii Pragma)
7.2. Loop-Carried Dependencies (ivdep Pragma)
7.3. Loop Coalescing (loop_coalesce Pragma)
7.4. Loop Unrolling (unroll Pragma)
7.5. Loop Concurrency (max_concurrency Pragma)
7.6. Loop Iteration Speculation (speculated_iterations Pragma)
7.7. Loop Pipelining Control (disable_loop_pipelining Pragma)
7.8. Loop Interleaving Control (max_interleaving Pragma)
7.9. Loop Fusion
12.4.1.1. Integration of an RTL Module into the HLS Pipeline
12.4.1.2. RTL Module Interfaces
12.4.1.3. RTL Reset and Clock Signals
12.4.1.4. Object Manifest File Syntax
12.4.1.5. Mapping HLS Data Types to RTL Signals
12.4.1.6. HLS Emulation Models for RTL-Based Functions
12.4.1.7. Potential Incompatibility between RTL Modules and Partial Reconfiguration
12.4.1.8. Stall-Free RTL
12.4.1.9. RTL Module Restrictions and Limitations for HLS Libraries
14.1. Intel® HLS Compiler Pro Edition i++ Command-Line Arguments
14.2. Intel® HLS Compiler Pro Edition Header Files
14.3. Intel® HLS Compiler Pro Edition Compiler-Defined Preprocessor Macros
14.4. Intel® HLS Compiler Pro Edition Keywords
14.5. Intel® HLS Compiler Pro Edition Simulation API (Testbench Only)
14.6. Intel® HLS Compiler Pro Edition Component Memory Attributes
14.7. Intel® HLS Compiler Pro Edition Loop Pragmas
14.8. Intel® HLS Compiler Pro Edition Scope Pragmas
14.9. Intel® HLS Compiler Pro Edition Component Attributes
14.10. Intel® HLS Compiler Pro Edition Component Default Interfaces
14.11. Intel® HLS Compiler Pro Edition Component Invocation Interface Control Attributes
14.12. Intel® HLS Compiler Pro Edition Component Macros
14.13. Intel® HLS Compiler Pro Edition Systems of Tasks API
14.14. Intel® HLS Compiler Pro Edition Pipes API
14.15. Intel® HLS Compiler Pro Edition Streaming Input Interfaces
14.16. Intel® HLS Compiler Pro Edition Streaming Output Interfaces
14.17. Intel® HLS Compiler Pro Edition Memory-Mapped Interfaces
14.18. Intel® HLS Compiler Pro Edition Load-Store Unit Control
14.19. Intel® HLS Compiler Pro Edition Arbitrary Precision Data Types
B.1. Math Functions Provided by the math.h Header File
B.2. Math Functions Provided by the extendedmath.h Header File
B.3. Math Functions Provided by the ac_fixed_math.h Header File
B.4. Math Functions Provided by the hls_float.h Header File
B.5. Math Functions Provided by the hls_float_math.h Header File
B.6. Default Rounding Schemes and Subnormal Number Support
Visible to Intel only — GUID: hsi1468861028556
Ixiasoft
7.4. Loop Unrolling (unroll Pragma)
The Intel® HLS Compiler supports the unroll pragma for unrolling multiple copies of a loop.
Example code:
#pragma unroll <N> for (int i = 0; i < M; ++i) { // Some useful work }
In this example, <N> specifies the unroll factor, that is, the number of copies of the loop that the HLS compiler generates. If you do not specify an unroll factor, the HLS compiler unrolls the loop fully when the number of loop iterations is known at compile time.
As an example of the kind of code the compiler generates when unrolling a loop, consider the following code snippet where you specify an unroll factor of 3:
hls_register float data[N];
#pragma unroll 3
for (int i = 0; i < N; i++)
{
data[i] = function(i, a);
}
Unrolling the loop with an unroll factor of 3 results in the compiler transforming the code snippet into something like the following code:
hls_register float data[N]; for (int i = 0; i < N; i += 3) { data[i + 0] = function(i + 0, a); if (i + 1 < N) { data[i + 1] = function(i + 1, a); } if (i + 2 < N) { data[i + 2] = function(i + 2, a); } }
You can find the unroll status of each loop in the high level design report (report.html).