Visible to Intel only — GUID: frs1667873395865
Ixiasoft
1. About this Document
2. Ashling RiscFree* IDE for Altera® FPGAs
3. Ashling Visual Studio Code Extension for Altera FPGAs
4. Ashling RiscFree* Integrated Development Environment (IDE) for Altera® FPGAs User Guide Archives
5. Document Revision History for the Ashling RiscFree* Integrated Development Environment (IDE) for Altera® FPGAs User Guide
A. Appendix
2.1. About the RiscFree* IDE for Altera® FPGAs IDE
2.2. Getting Started with the Ashling* RiscFree* IDE for Altera® FPGAs
2.3. Using Ashling* RiscFree* IDE for Altera® FPGAs with Nios® V Processor System
2.4. Using Ashling* RiscFree* IDE for Altera® FPGAs with Arm* Hard Processor System
2.5. Debugging Features with RiscFree* IDE for Altera® FPGAs
2.2.1. Installing RiscFree* IDE for Altera FPGAs
2.2.2. Getting Started with RiscFree* IDE for Altera® FPGAs
2.2.3. Creating the Project
2.2.4. Building the Application
2.2.5. Run and Debug Configurations in the RiscFree* IDE for Altera® FPGAs
2.2.6. Debug Information in the RiscFree* IDE for Altera® FPGAs
2.5.1. Debug Features in RiscFree* IDE
2.5.2. Processor System Debug
2.5.3. Heterogeneous Multicore Debug
2.5.4. Debugging µC/OS-II Application
2.5.5. Debugging FreeRTOS Application
2.5.6. Debugging Zephyr Application
2.5.7. Arm* HPS On-Chip Trace
2.5.8. Debugging the Arm* Linux Kernel
2.5.9. Debugging Target Software in an Intel® Simics Simulator Session
3.1. About the Ashling Visual Studio Code Extension
3.2. Getting Started with Ashling* Visual Studio Code Extension
3.3. Using Ashling* Visual Studio Code Extension with Nios® V Processor System
3.4. Using Ashling* Visual Studio Code Extension with Arm Hard Processor System
3.5. Debugging Features in Ashling* Visual Studio Code Extension
3.3.1. Creating Nios® V Processor BSP using Nios® V Processor BSP Generator
3.3.2. Creating Nios® V Processor Application Project using Nios® V App Generator
3.3.3. Importing Nios® V Processor Project
3.3.4. Building Nios® V Processor Project
3.3.5. Debugging a Nios® V Processor Project
3.3.6. Debugging Tools
Visible to Intel only — GUID: frs1667873395865
Ixiasoft
2.5.7.2. Trace View
Trace Information | Description |
---|---|
Timestamp | The timestamp value received from the target |
Cycles | The CPU cycle count information. The cycle count is available from the target for a set of instructions only. Cycle count against an instruction represents the number of CPU cycles consumed for the set of instructions starting from the last cycle count received. |
Context ID | Context ID of the current execution. Context ID gives the information about the ASID and the current Process ID. |
Core No | Core index of the core executing the trace data. |
Address | The instruction address executed by the CPU. |
Opcode | Opcode of the executed instruction. |
Disassembly | Disassembly of the executed instruction. |
Source Line | Source Line corresponding to the instruction execution. |
Example Use Case: Disassembly View
Double click the trace row to highlight the corresponding source line and disassembly in Source and Disassembly view. Refer Figure Trace View and the following figures for more details.
Figure 73. Source Highlighting — Debug and Disassembly Tab
Figure 74. Source Highlighting — main.c Tab