Visible to Intel only — GUID: vax1741877365326
Ixiasoft
1. About this Document
2. Ashling RiscFree* IDE for Altera® FPGAs
3. Ashling Visual Studio Code Extension for Altera FPGAs
4. Ashling RiscFree* Integrated Development Environment (IDE) for Altera® FPGAs User Guide Archives
5. Document Revision History for the Ashling RiscFree* Integrated Development Environment (IDE) for Altera® FPGAs User Guide
A. Appendix
2.1. About the RiscFree* IDE for Altera® FPGAs IDE
2.2. Getting Started with the Ashling* RiscFree* IDE for Altera® FPGAs
2.3. Using Ashling* RiscFree* IDE for Altera® FPGAs with Nios® V Processor System
2.4. Using Ashling* RiscFree* IDE for Altera® FPGAs with Arm* Hard Processor System
2.5. Debugging Features with RiscFree* IDE for Altera® FPGAs
2.2.1. Installing RiscFree* IDE for Altera FPGAs
2.2.2. Getting Started with RiscFree* IDE for Altera® FPGAs
2.2.3. Creating the Project
2.2.4. Building the Application
2.2.5. Run and Debug Configurations in the RiscFree* IDE for Altera® FPGAs
2.2.6. Debug Information in the RiscFree* IDE for Altera® FPGAs
2.5.1. Debug Features in RiscFree* IDE
2.5.2. Processor System Debug
2.5.3. Heterogeneous Multicore Debug
2.5.4. Debugging µC/OS-II Application
2.5.5. Debugging FreeRTOS Application
2.5.6. Debugging Zephyr Application
2.5.7. Arm* HPS On-Chip Trace
2.5.8. Debugging the Arm* Linux Kernel
2.5.9. Debugging Target Software in an Intel® Simics Simulator Session
3.1. About the Ashling Visual Studio Code Extension
3.2. Getting Started with Ashling* Visual Studio Code Extension
3.3. Using Ashling* Visual Studio Code Extension with Nios® V Processor System
3.4. Using Ashling* Visual Studio Code Extension with Arm Hard Processor System
3.5. Debugging Features in Ashling* Visual Studio Code Extension
3.3.1. Creating Nios® V Processor BSP using Nios® V Processor BSP Generator
3.3.2. Creating Nios® V Processor Application Project using Nios® V App Generator
3.3.3. Importing Nios® V Processor Project
3.3.4. Building Nios® V Processor Project
3.3.5. Debugging a Nios® V Processor Project
3.3.6. Debugging Tools
Visible to Intel only — GUID: vax1741877365326
Ixiasoft
3.3.6.4. Disassembly View with Registers View Stepping into Assembler Functions
Disassembly view allows you to observe your program as it is disassembled. This is helpful when the instruction pointer enters a function for which it does not have the source.
Follow these steps to launch the disassembly view:
- Navigate to Activity Bar > CALL STACK.
- Right-click on the item in CALL STACK and click Open Disassembly View.
Figure 144. Turn On Disassembly View
To debug using the disassembled code in the Disassembly view, set a breakpoint at the line you wish to pause. Once the debugger steps into the line that you have set the breakpoint, you can observe the change in the Registers view.
Figure 145. Disassembly View with Register View