Product Discontinuance Notification
1. About the RapidIO Intel FPGA IP Core
2. Getting Started
3. Parameter Settings
4. Functional Description
5. Signals
6. Software Interface
7. Testbench
8. Platform Designer (Standard) Design Example
9. RapidIO Intel FPGA IP User Guide Archives
10. Document Revision History for the RapidIO Intel® FPGA IP User Guide
A. Initialization Sequence
B. Porting a RapidIO Design from the Previous Version of Software
2.1. Installing and Licensing Intel® FPGA IP Cores
2.2. Generating IP Cores
2.3. IP Core Generation Output ( Intel® Quartus® Prime Standard Edition)
2.4. RapidIO IP Core Testbench Files
2.5. Simulating IP Cores
2.6. Integrating Your IP Core in Your Design
2.7. Specifying Timing Constraints
2.8. Compiling the Full Design and Programming the FPGA
2.9. Instantiating Multiple RapidIO IP Cores
2.6.1. Calibration Clock
2.6.2. Dynamic Transceiver Reconfiguration Controller
2.6.3. Transceiver Settings
2.6.4. Adding Transceiver Analog Settings for Arria II GX, Arria II GZ, and Stratix IV GX Variations
2.6.5. External Transceiver PLL
2.6.6. Transceiver PHY Reset Controller for Intel® Arria® 10 and Intel® Cyclone® 10 GX Variations
2.9.1. Clock and Signal Requirements for Arria® V, Cyclone® V, and Stratix® V Variations
2.9.2. Clock and Signal Requirements for Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX Variations
2.9.3. Correcting the Synopsys Design Constraints File to Distinguish RapidIO IP Core Instances
2.9.4. Sourcing Multiple Tcl Scripts for Variations other than Intel® Arria® 10 and Intel® Cyclone® 10 GX
6.2.1. Capability Registers (CARs)
6.2.2. Command and Status Registers (CSRs)
6.2.3. Maintenance Interrupt Control Registers
6.2.4. Receive Maintenance Registers
6.2.5. Transmit Maintenance Registers
6.2.6. Transmit Port-Write Registers
6.2.7. Receive Port-Write Registers
6.2.8. Input/Output Master Address Mapping Registers
6.2.9. Input/Output Slave Mapping Registers
6.2.10. Input/Output Slave Interrupts
6.2.11. Transport Layer Feature Register
6.2.12. Error Management Registers
6.2.13. Doorbell Message Registers
7.1. Reset, Initialization, and Configuration
7.2. Maintenance Write and Read Transactions
7.3. SWRITE Transactions
7.4. NWRITE_R Transactions
7.5. NWRITE Transactions
7.6. NREAD Transactions
7.7. Doorbell Transactions
7.8. Doorbell and Write Transactions With Transaction Order Preservation
7.9. Port-Write Transactions
7.10. Transactions Across the Avalon® -ST Pass-Through Interface
8.2.3. Connecting Clocks and the System Components
You must connect any unconnected clocks and other components in your system.
To support external connections, you must export them. Click Click to export in the Export column for the rapidio_0.clk and rapidio_0.exported_connections ports. The clk_0.clk_in and clk_0.clk_in_reset signals are already exported.
For the external RapidIO processing elements to access the internal registers of the RapidIO variation, your system must meet the following criteria:
- The Maintenance Master port must be connected to the System Maintenance Slave port.
- The System Maintenance Slave port Base address must be assigned to address 0x0.
The following sections show you how to make these connections and assignments, and others required for the design example.