Visible to Intel only — GUID: nik1411172631279
Ixiasoft
2.1. Installation and Licensing for LL 40-100GbE IP Core for Stratix V Devices
2.2. Licensing IP Cores
2.3. Specifying the Low Latency 40-100GbE IP Core Parameters and Options
2.4. IP Core Parameters
2.5. Files Generated for Stratix V Variations
2.6. Files Generated for Arria 10 Variations
2.7. Integrating Your IP Core in Your Design
2.8. Low Latency 40-100GbE IP Core Testbenches
2.9. Simulating the Low Latency 40‑100GbE IP Core With the Testbenches
2.10. Compiling the Full Design and Programming the FPGA
2.11. Initializing the IP Core
2.7.1. Pin Assignments
2.7.2. External Transceiver Reconfiguration Controller Required in Stratix V Designs
2.7.3. Transceiver PLL Required in Arria 10 Designs
2.7.4. External Time-of-Day Module for Variations with 1588 PTP Feature
2.7.5. Clock Requirements for 40GBASE-KR4 Variations
2.7.6. External TX MAC PLL
2.7.7. Placement Settings for the Low Latency 40-100GbE IP Core
2.9.1. Generating the Low Latency 40-100GbE Testbench
2.9.2. Optimizing the Low Latency 40‑100GbE IP Core Simulation With the Testbenches
2.9.3. Simulating with the Modelsim Simulator
2.9.4. Simulating with the NCSim Simulator
2.9.5. Simulating with the VCS Simulator
2.9.6. Testbench Output Example: Low Latency 40-100GbE IP Core
3.2.1. Low Latency 40-100GbE IP Core TX Datapath
3.2.2. Low Latency 40-100GbE IP Core TX Data Bus Interfaces
3.2.3. Low Latency 40-100GbE IP Core RX Datapath
3.2.4. Low Latency 40-100GbE IP Core RX Data Bus Interface
3.2.5. Low Latency 100GbE CAUI–4 PHY
3.2.6. External Reconfiguration Controller
3.2.7. External Transceiver PLL
3.2.8. External TX MAC PLL
3.2.9. Congestion and Flow Control Using Pause Frames
3.2.10. Pause Control and Generation Interface
3.2.11. Pause Control Frame Filtering
3.2.12. Link Fault Signaling Interface
3.2.13. Statistics Counters Interface
3.2.14. 1588 Precision Time Protocol Interfaces
3.2.15. PHY Status Interface
3.2.16. Transceiver PHY Serial Data Interface
3.2.17. Low Latency 40GBASE-KR4 IP Core Variations
3.2.18. Control and Status Interface
3.2.19. Arria 10 Transceiver Reconfiguration Interface
3.2.20. Clocks
3.2.21. Resets
3.2.2.1. Low Latency 40-100GbE IP Core User Interface Data Bus
3.2.2.2. Low Latency 40-100GbE IP Core TX Data Bus with Adapters (Avalon-ST Interface)
3.2.2.3. Low Latency 40-100GbE IP Core TX Data Bus Without Adapters (Custom Streaming Interface)
3.2.2.4. Bus Quantization Effects With Adapters
3.2.2.5. User Interface to Ethernet Transmission
3.2.3.1. Low Latency 40-100GbE IP Core RX Filtering
3.2.3.2. 40-100GbE IP Core Preamble Processing
3.2.3.3. 40-100GbE IP Core FCS (CRC-32) Removal
3.2.3.4. 40-100GbE IP Core CRC Checking
3.2.3.5. LL 40-100GbE IP Core Malformed Packet Handling
3.2.3.6. RX CRC Forwarding
3.2.3.7. Inter-Packet Gap
3.2.3.8. Pause Ignore
3.2.3.9. Control Frame Identification
Visible to Intel only — GUID: nik1411172631279
Ixiasoft
3.2.9.1. Conditions Triggering XOFF Frame Transmission
The LL 40-100GbE IP core supports retransmission. In retransmission mode, the IP core retransmits a XOFF frame periodically, extending the pause time, based on signal values.
The TX MAC transmits XOFF frames when one of the following conditions occurs:
- Client requests XOFF transmission—A client can explicitly request that XOFF frames be sent using the pause control interface signal. When pause_insert_tx is asserted, an XOFF frame is sent to the Ethernet network when the current frame transmission completes.
- Host (software) requests XOFF transmission—Setting the pause request register triggers a request that an XOFF frame be sent.
- Retransmission mode—If the retransmit hold-off enable bit has the value of 1, and the pause_insert_tx signal remains asserted or the pause request register value remains high, when the time duration specified in the hold-off quanta register has lapsed after the previous XOFF transmission, the TX MAC sends another XOFF frame to the Ethernet network. While the IP core is paused in retransmission mode, you cannot use either of the other two methods to trigger a new XOFF frame: the signal or register value is already high.
Note: Altera recommends that you use the pause_insert_tx signal to backpressure the remote Ethernet node.
Note: Altera recommends that you set and maintain the value of the retransmit hold-off enable bit at 1 to control the rate of XOFF pause frame transmission.