GTS Transceiver PHY User Guide: Agilex™ 5 FPGAs and SoCs
ID
817660
Date
4/07/2025
Public
A newer version of this document is available. Customers should click here to go to the newest version.
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 5 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. Reconfigurable PHY Settings
3.3.4. TX Datapath Options
3.3.5. RX Datapath Options
3.3.6. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.7. FEC Options
3.3.8. PCS Options
3.3.9. Avalon® Memory-Mapped Interface Options
3.3.10. Register Map IP-XACT Support
3.3.11. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.9.1. Reset Signal Requirements
3.9.2. Power On Reset Requirements
3.9.3. Reset Signals—Block Level
3.9.4. Run-time Reset Sequence—TX
3.9.5. Run-time Reset Sequence—RX
3.9.6. Run-time Reset Sequence—TX + RX
3.9.7. RX Data Loss/CDR Lock Loss (Auto-Recovery)
3.9.8. TX PLL Lock Loss
3.9.9. TX PLL Lock Loss Auto-Recovery (Soft CSR Enabled)
5.1. IP Requirements
5.2. IP Parameters
5.3. IP Port List
5.4. GTS Reset Sequencer Intel FPGA IP General Interface
5.5. GTS Reset Sequencer Intel FPGA IP Design Flow
5.6. GTS Reset Sequencer Intel FPGA IP Use Cases
5.7. Connecting the Reference Clock Buffer Status to the GTS Reset Sequencer Intel® FPGA IP
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.7. GTS PMA/FEC Direct PHY Intel FPGA IP Reconfigurable PHY Example Design
6.8. Generating the GTS PMA/FEC Direct PHY Intel® FPGA IP Reconfigurable Example Design
6.9. GTS PMA/FEC Direct PHY Intel FPGA IP Reconfigurable PHY Example Design Functional Description
6.10. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Reconfigurable PHY Example Design Testbench
6.11. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Reconfigurable PHY Example Design
6.12. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Reconfigurable PHY Example Design
3.1.2. FEC Direct Supported Modes
The GTS PMA/FEC Direct PHY Intel FPGA IP supports the following for FEC Direct modes:
- IEEE 802.3 BASE-R Firecode (2112, 2080) (CL 74)
- IEEE 802.3 RS (528, 514) (CL 91)
- ETC 802.3 RS (528, 514) (CL 91)
- Fibre Channel RS (528,514)
- OTU25u RS (528,514)
- Only supported by the System PLL clocking mode
- Supports only the duplex operation mode
- Only supports single lane FEC, for multi-lane FEC, each lane operates independently, for example 4x10G-1 and 4x25G-1
- All FEC modes support 1 Gbps to GTS transceiver maximum supported data rate
You can enable the FEC Direct mode in the IP parameter editor by turning on the Enable FEC option. The FEC Direct modes with FEC specifications are topology dependent to achieve different BER. FEC data to and from the PCS is 33 bits. On the PMA interface side, FEC data from and to the PMA interface is 33 bits wide for Firecode FEC and 40 bits for RS-FEC. For designs that include FEC, the gearbox enables automatically. The gearbox option for Firecode FEC is 32:33 and 32:40 for RS-FEC.
Clocking Mode | FEC Mode | Double Width/ Single Width 27 | PMA Interface Width | PMA Interface FIFO (TX/RX) | Core Interface FIFO (TX/RX) |
---|---|---|---|---|---|
System PLL Clocking |
Firecode FEC (2112, 2080) CL74 | DW | 32 | Elastic/Elastic | Phase Compensation/Phase Compensation |
RS-FEC (528, 514) CL91 | DW | 32 | Elastic/Elastic | Phase Compensation/Phase Compensation | |
ETC 802.3 RS-FEC (528, 514) CL91 | DW | 32 | Elastic/Elastic | Phase Compensation/Phase Compensation | |
Fibre Channel RS (528, 514) | DW | 32 | Elastic/Elastic | Phase Compensation/Phase Compensation | |
OTU25u RS (528, 514) | DW | 32 | Elastic/Elastic | Phase Compensation/Phase Compensation |
27 The Double width (DW) mode is when the Enable TX/RX double width transfer parameter in the GTS PMA/FEC Direct PHY Intel FPGA IP GUI is enabled. When it is enabled, you can clock the FPGA core logic with a half rate clock. Single width (SW) mode is when this parameter is not enabled.