GTS Ethernet Hard IP User Guide: Agilex™ 3 FPGAs and SoCs
ID
848477
Date
7/07/2025
Public
1. Overview
2. Install and License the GTS Ethernet Hard IP
3. Configure and Generate Ethernet Hard IP variant
4. Integrate GTS Ethernet Hard IP into Your Application
5. Simulate and Compile (MAC+PCS) Design Example
6. Simulate and Compile (MII PCS Only/PCS66 OTN/PCS66 FlexE) Design Example
7. Simulate and Compile SyncE Design Example
8. Simulate and Compile PTP1588 Design Example
9. Simulate and Compile (Dynamically Reconfigurable Ethernet Mode)
10. Simulate and Compile - Auto-Negotiation and Link Training
11. Troubleshoot and Diagnose Issues
12. Appendix A: Functional Description
13. Appendix B: Configuration Registers
14. Appendix C: Document Revision History for the GTS Ethernet Hard IP User Guide: Agilex 3 FPGAs and SoCs
4.1. Implement Required Clocking
4.2. Implement Required Resets
4.3. Connect the Status Interface
4.4. Connect the MAC Avalon Streaming Client Interface
4.5. Connect the MII PCS Only Client Interface
4.6. Connect the PCS66 Client Interface – FlexE and OTN
4.7. Connect the Precision Time Protocol Interface
4.8. Connect the Ethernet Hard IP Reconfiguration Interface
4.9. Connect the Auto-Negotiation and Link Training
4.10. Connect the Multirate Auto-Negotiation and Link Training
4.11. Connect the Dynamically Reconfigurable Ethernet Mode
4.4.1.1. Drive the Ethernet Packet to the TX MAC Avalon Streaming Client Interface with Disabled Preamble Passthrough
4.4.1.2. Drive the Ethernet Packet on the TX MAC Avalon Streaming Client Interface with Enabled Preamble Passthrough
4.4.1.3. Use i_tx_skip_crc to Control Source Address, PAD, and CRC Insertion
4.4.1.4. Assert the i_tx_error to Invalidate a Packet
4.4.2.1. Receive Ethernet Frame on the RX MAC Avalon Streaming Client Interface with Preamble Passthrough Disabled
4.4.2.2. Receive Ethernet Frame with Preamble Passthrough Enabled
4.4.2.3. Receive Ethernet Frame with Remove CRC bytes Disabled
4.4.2.4. Monitor Status and Errors on the RX MAC Avalon Streaming Client Interface
12.4.3.2. Adjust RX UI
- Request snapshot of initial RX TAM:
csr_write (ptp_uim_tam_snapshot.rx_tam_snapshot, 1’b1)
- Read snapshotted initial TAM and counter values:
rx_tam_0_31_0 = csr_read (ptp_rx_uim_tam_info0.tam_31_0[31:0]) rx_tam_0_47_32 = csr_read (ptp_rx_uim_tam_info1.tam_47_32[15:0]) rx_tam_0_cnt = csr_read (ptp_rx_uim_tam_info1.tam_cnt[30:16]) rx_tam_0_valid = csr_read (ptp_rx_uim_tam_info1.tam_valid[31])
- If rx_tam_0_valid = 1, complete TAM by concatenating the initial TAM values:
rx_tam_0 = {rx_tam_0_47_32, rx_tam_0_31_0};
- If rx_tam_0_valid = 0, restart from step1.
- If rx_tam_0_valid = 1, complete TAM by concatenating the initial TAM values:
- Starting from time when step 1 is executed, wait for time duration as specified in the Minimum and Maximum Reference Time (TAM) Interval for UI Measurement (Hardware) section.
- Request snapshot of Nth RX TAM:
csr_write (ptp_uim_tam_snapshot.rx_tam_snapshot, 1’b1)
- Read snapshotted Nth TAM and counter values:
rx_tam_n_31_0 = csr_read (ptp_rx_uim_info0.tam_31_0[31:0]) rx_tam_n_47_32 = csr_read (ptp_rx_uim_tam_info1.tam_47_32[15:0]) rx_tam_n_cnt = csr_read (ptp_rx_uim_tam_info1.tam_cnt[30:16]) rx_tam_n_valid = csr_read (ptp_rx_uim_tam_info1.tam_valid[31])
Form the TAM by concatenating snapshotted Nth TAM values:rx_tam_n = {rx_tam_n_47_32, rx_tam_n_31_0};
- Check if there was a large change to TOD value impacting TAM value:
rx_tam_n_valid = csr_read (ptp_rx_uim_tam_info1.tam_valid[31])
If rx_tam_n_valid = 0, restart step 1. If you used rx_tam_n as a new rx_tam_0 and rx_tam_n_cnt as a new rx_tam_0_cnt, you can skip step 1 and 2. Then, you can start the wait time in step 3 when step 4 executes.
- Calculation:
- Get TAM interval
rx_tam_interval = <Refer to Reference Time Interval> rx_tam_interval_per_pl = rx_tam_interval / PL
- Calculate time elapsed:
rx_tam_delta = (rx_tam_n <= rx_tam_0) ? [(rx_tam_n + 10^9ns) – rx_tam_0] : (rx_tam_n – rx_tam_0)
Per step 3, rx_tam_0 and rx_tam_n difference must be within the expected time range.- If rx_tam_delta (in ms) is lesser that the minimum time, which is 0.16 ms, discard the result and restart from step 3.
- If rx_tam_delta (in ms) is greater than the maximum value, which is 536.85 ms, discard the result and restart from step 1 or step 3 by using rx_tam_n as a new rx_tam_0.
Note: 10^9ns = 48’h 3B9A_CA00_0000 - Calculate TAM count value:
rx_tam_cnt = (rx_tam_n_cnt < rx_tam_0_cnt) ? [(rx_tam_n_cnt + 2^15) – rx_tam_0_cnt] : (rx_tam_n_cnt – rx_tam_0_cnt)
Per step 3, rx_tam_0 and rx_tam_n difference must be within the expected time range.- If rx_tam_cnt (in ms) is lesser that the minimum time value, which is 10 ms, discard the result and restart from step 3.
- If rx_tam_cnt (in ms) is greater than the maximum value, which is, 32,767 ms, discard the result and restart from step 1 or step 3 by using rx_tam_n as a new rx_tam_0.
- Calculate UI value:
rx_ui = (rx_tam_delta) / (rx_tam_cnt * rx_tam_interval_pl)
- Get TAM interval
- Write the calculated UI value to IP:
csr_write (rx_ptp_ui, rx_ui)
Ensure the format is {4-bit nanoseconds, 28-bit fractional nanoseconds}.
- After first UI measurement, for every minimum TAM interval or longer duration, repeat step 1 to 8. This is to prevent time counter drift from the golden time-of-day in the system whenever the clock ppm changes.