Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?coosm

Solves a system of linear matrix equations for a sparse matrix in the coordinate format (deprecated).

Syntax

void mkl_scoosm (const char *transa , const MKL_INT *m , const MKL_INT *n , const float *alpha , const char *matdescra , const float *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const float *b , const MKL_INT *ldb , float *c , const MKL_INT *ldc );

void mkl_dcoosm (const char *transa , const MKL_INT *m , const MKL_INT *n , const double *alpha , const char *matdescra , const double *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const double *b , const MKL_INT *ldb , double *c , const MKL_INT *ldc );

void mkl_ccoosm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex8 *b , const MKL_INT *ldb , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zcoosm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex16 *b , const MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?coosm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format:

C := alpha*inv(A)*B

or

C := alpha*inv(AT)*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

Input Parameters

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then the matrix-matrix product is computed as C := alpha*inv(A)*B

If transa = 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as C := alpha*inv(AT)*B,

m

Number of rows of the matrix A.

n

Number of columns of the matrix C.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Array of length nnz, contains non-zero elements of the matrix A in the arbitrary order.

Refer to values array description in Coordinate Format for more details.

rowind

Array of length nnz.

For one-based indexing, contains the row indices plus one for each non-zero element of the matrix A.

For zero-based indexing, contains the row indices for each non-zero element of the matrix A.

Refer to rows array description in Coordinate Format for more details.

colind

Array of length nnz.

For one-based indexing, contains the column indices plus one for each non-zero element of the matrix A

For zero-based indexing, contains the row indices for each non-zero element of the matrix A

Refer to columns array description in Coordinate Format for more details.

nnz

Specifies the number of non-zero element of the matrix A.

Refer to nnz description in Coordinate Format for more details.

b

Array, size ldb by n for one-based indexing, and (m, ldb) for zero-based indexing.

Before entry the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b for one-based indexing, and the second dimension of b for zero-based indexing, as declared in the calling (sub)program.

ldc

Specifies the leading dimension of c for one-based indexing, and the second dimension of c for zero-based indexing, as declared in the calling (sub)program.

Output Parameters

c

Array, size ldc by n for one-based indexing, and (m, ldc) for zero-based indexing.

The leading m-by-n part of the array c contains the output matrix C.