Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?diamv

Computes matrix - vector product for a sparse matrix in the diagonal format with one-based indexing (deprecated).

Syntax

void mkl_sdiamv (const char *transa , const MKL_INT *m , const MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const float *x , const float *beta , float *y );

void mkl_ddiamv (const char *transa , const MKL_INT *m , const MKL_INT *k , const double *alpha , const char *matdescra , const double *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const double *x , const double *beta , double *y );

void mkl_cdiamv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8 *x , const MKL_Complex8 *beta , MKL_Complex8 *y );

void mkl_zdiamv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex16 *x , const MKL_Complex16 *beta , MKL_Complex16 *y );

Include Files

  • mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?diamv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*AT*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix stored in the diagonal format, AT is the transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

transa

Specifies the operation.

If transa = 'N' or 'n', then y := alpha*A*x + beta*y,

If transa = 'T' or 't' or 'C' or 'c', then y := alpha*AT*x + beta*y.

m

Number of rows of the matrix A.

k

Number of columns of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.

lval

Leading dimension of val, lvalm. Refer to lval description in Diagonal Storage Scheme for more details.

idiag

Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix A.

Refer to distance array description in Diagonal Storage Scheme for more details.

ndiag

Specifies the number of non-zero diagonals of the matrix A.

x

Array, size at least k if transa = 'N' or 'n', and at least m otherwise. On entry, the array x must contain the vector x.

beta

Specifies the scalar beta.

y

Array, size at least m if transa = 'N' or 'n', and at least k otherwise. On entry, the array y must contain the vector y.

Output Parameters

y

Overwritten by the updated vector y.