Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?csrmm

Computes matrix - matrix product of a sparse matrix stored in the CSR format (deprecated).

Syntax

void mkl_scsrmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *b , const MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );

void mkl_dcsrmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const double *alpha , const char *matdescra , const double *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const double *b , const MKL_INT *ldb , const double *beta , double *c , const MKL_INT *ldc );

void mkl_ccsrmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zcsrmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*AT*B + beta*C

or

C := alpha*AH*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in compressed sparse row (CSR) format, AT is the transpose of A, and AH is the conjugate transpose of A.

NOTE:

This routine supports a CSR format both with one-based indexing and zero-based indexing.

Input Parameters

transa

Specifies the operation.

If transa = 'N' or 'n', then C := alpha*A*B + beta*C,

If transa = 'T' or 't', then C := alpha*AT*B + beta*C,

If transa = 'C' or 'c', then C := alpha*AH*B + beta*C.

m

Number of rows of the matrix A.

n

Number of columns of the matrix C.

k

Number of columns of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

val

Array containing non-zero elements of the matrix A.

For zero-based indexing its length is pntre[m—1] - pntrb[0].

Refer to values array description in CSR Format for more details.

indx

For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix A.

For zero-based indexing, array containing the column indices for each non-zero element of the matrix A.

Its length is equal to length of the val array.

Refer to columns array description in CSR Format for more details.

pntrb

Array of length m.

This array contains row indices, such that pntrb[I] - pntrb[0] is the first index of row I in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.

pntre

Array of length m.

This array contains row indices, such that pntre[I] - pntrb[0] - 1 is the last index of row I in the arrays val and indx.

Refer to pointerE array description in CSR Format for more details.

b

Array, size ldb by at least n for non-transposed matrix A and at least m for transposed for one-based indexing, and (at least k for non-transposed matrix A and at least m for transposed, ldb) for zero-based indexing.

On entry with transa='N' or 'n', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b for one-based indexing, and the second dimension of b for zero-based indexing, as declared in the calling (sub)program.

beta

Specifies the scalar beta.

c

Array, size ldc by n for one-based indexing, and (m, ldc) for zero-based indexing.

On entry, the leading m-by-n part of the array c must contain the matrix C, otherwise the leading k-by-n part of the array c must contain the matrix C.

ldc

Specifies the leading dimension of c for one-based indexing, and the second dimension of c for zero-based indexing, as declared in the calling (sub)program.

Output Parameters

c

Overwritten by the matrix (alpha*A*B + beta* C), (alpha*AT*B + beta*C), or (alpha*AH*B + beta*C).