Visible to Intel only — GUID: GUID-C2AA1F15-D2C5-425B-90BD-1012163DA3EE
Visible to Intel only — GUID: GUID-C2AA1F15-D2C5-425B-90BD-1012163DA3EE
?trtri
Computes the inverse of a triangular matrix.
Syntax
lapack_int LAPACKE_strtri (int matrix_layout , char uplo , char diag , lapack_int n , float * a , lapack_int lda );
lapack_int LAPACKE_dtrtri (int matrix_layout , char uplo , char diag , lapack_int n , double * a , lapack_int lda );
lapack_int LAPACKE_ctrtri (int matrix_layout , char uplo , char diag , lapack_int n , lapack_complex_float * a , lapack_int lda );
lapack_int LAPACKE_ztrtri (int matrix_layout , char uplo , char diag , lapack_int n , lapack_complex_double * a , lapack_int lda );
Include Files
- mkl.h
Description
The routine computes the inverse inv(A) of a triangular matrix A.
Input Parameters
matrix_layout |
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). |
uplo |
Must be 'U' or 'L'. Indicates whether A is upper or lower triangular: If uplo = 'U', then A is upper triangular. If uplo = 'L', then A is lower triangular. |
diag |
Must be 'N' or 'U'. If diag = 'N', then A is not a unit triangular matrix. If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a. |
n |
The order of the matrix A; n≥ 0. |
a |
Array: . Contains the matrix A. |
lda |
The first dimension of a; lda≥ max(1, n). |
Output Parameters
a |
Overwritten by the matrix inv(A). |
Return Values
This function returns a value info.
If info = 0, the execution is successful.
If info = -i, parameter i had an illegal value.
If info = i, the i-th diagonal element of A is zero, A is singular, and the inversion could not be completed.
Application Notes
The computed inverse X satisfies the following error bounds:
|XA - I| ≤ c(n)ε |X||A|
|XA - I| ≤ c(n)ε |A-1||A||X|,
where c(n) is a modest linear function of n; ε is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3 for complex flavors.