Visible to Intel only — GUID: GUID-A7E8460C-9CE1-436E-928D-64F634BC0E59
Visible to Intel only — GUID: GUID-A7E8460C-9CE1-436E-928D-64F634BC0E59
?dttrf
Computes an LU factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).
Syntax
void sdttrf (MKL_INT *n , float *dl , float *d , float *du , MKL_INT *info );
void ddttrf (MKL_INT *n , double *dl , double *d , double *du , MKL_INT *info );
void cdttrf (MKL_INT *n , MKL_Complex8 *dl , MKL_Complex8 *d , MKL_Complex8 *du , MKL_INT *info );
void zdttrf (MKL_INT *n , MKL_Complex16 *dl , MKL_Complex16 *d , MKL_Complex16 *du , MKL_INT *info );
Include Files
- mkl_scalapack.h
Description
The ?dttrffunction computes an LU factorization of a real or complex tridiagonal matrix A using elimination without partial pivoting.
The factorization has the form A = L*U, where L is a product of unit lower bidiagonal matrices and U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.
Input Parameters
- n
-
The order of the matrix A(n ≥ 0).
- dl, d, du
-
Arrays containing elements of A.
The array dl of size (n-1) contains the sub-diagonal elements of A.
The array d of size n contains the diagonal elements of A.
The array du of size (n-1) contains the super-diagonal elements of A.
Output Parameters
- dl
-
Overwritten by the (n-1) multipliers that define the matrix L from the LU factorization of A.
- d
-
Overwritten by the n diagonal elements of the upper triangular matrix U from the LU factorization of A.
- du
-
Overwritten by the (n-1) elements of the first super-diagonal of U.
- info
-
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = i, the matrix element U(i,i) is exactly 0. The factorization has been completed, but the factor U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.