Visible to Intel only — GUID: GUID-AC308B5E-4BA7-4BBE-A3ED-71A8811A1DD3
Visible to Intel only — GUID: GUID-AC308B5E-4BA7-4BBE-A3ED-71A8811A1DD3
p?orgqr
Generates the orthogonal matrix Q of the QR factorization formed by p?geqrf.
Syntax
void psorgqr (MKL_INT *m , MKL_INT *n , MKL_INT *k , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *tau , float *work , MKL_INT *lwork , MKL_INT *info );
void pdorgqr (MKL_INT *m , MKL_INT *n , MKL_INT *k , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
Include Files
- mkl_scalapack.h
Description
The p?orgqrfunction generates the whole or part of m-by-n real distributed matrix Q denoting A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m
Q= H(1)*H(2)*...*H(k)
as returned by p?geqrf.
Input Parameters
- m
-
(global) The number of rows in the matrix sub(Q) (m≥ 0).
- n
-
(global) The number of columns in the matrix sub(Q) (m≥n≥ 0).
- k
-
(global) The number of elementary reflectors whose product defines the matrix Q(n≥k≥ 0).
- a
-
(local)
Pointer into the local memory to an array of local size lld_a*LOCc(ja+n-1). The j-th column of the matrix stored in amust contain the vector that defines the elementary reflector H(j), ja≤ j ≤ ja +k-1, as returned by p?geqrf in the k columns of its distributed matrix argument A(ia:*, ja:ja+k-1).
- ia, ja
-
(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A(ia:ia+m-1, ja:ja+n-1), respectively.
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
- tau
-
(local)
Array of size LOCc(ja+k-1).
Contains the scalar factor tau[j] of elementary reflectors H(j+1) as returned by p?geqrf (0 ≤ j < LOCc(ja+k-1)). tau is tied to the distributed matrix A.
- work
-
(local)
Workspace array of size of lwork.
- lwork
-
(local or global) size of work.
Must be at least lwork≥nb_a*(nqa0 + mpa0 + nb_a), where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL);
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
Output Parameters
- a
-
Contains the local pieces of the m-by-n distributed matrix Q.
- work[0]
-
On exit, [0] contains the minimum value of lwork required for optimum performance.
- info
-
(global)
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.