AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers
ID
848984
Date
4/07/2025
Public
2.2.1. Preparing Dataset
Apply the following Python commands to load the MNIST dataset. The Matplotlib library allows you to display random MNIST samples.
# Load the MNIST Train and Test Dataset mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() rows, cols = 28, 28 # Display Random Samples fig = plt.figure(figsize=(9,9)) for i in range(8): ind = random.randint(0, len(x_train)) plt.subplot(3,3,i+1) plt.imshow(x_train[ind], cmap="gray", interpolation=None) plt.title(y_train[ind])
Figure 1. Example of MNIST Samples