AN 1000: Drive-on-Chip Design Example: Agilex™ 5 Devices
ID
826207
Date
7/08/2024
Public
1. About the Drive-on-Chip Design Example for Agilex™ 5 Devices
2. Features of the Drive-on-Chip Design Example for Agilex Devices
3. Getting Started with the Drive-on-Chip Design Example
4. Rebuilding the Drive-on-Chip Design Example
5. Modifying the Design Example for a Different Board
6. About the Scaling of Feedback Signals
7. Motor Control Software
8. Functional Description of the Drive-on-Chip Design Example for Agilex 5 Devices
9. Signals
10. Registers
11. Design Security Recommendations
12. Document Revision History for AN 1000: Drive-on-Chip Design Example for Agilex™ 5 Devices
3.1. Software Requirements for the Drive-on-Chip Design Example for Agilex 5 Devices
3.2. Hardware Requirements for the Drive-on-Chip Design Example for Agilex 5 Devices
3.3. Downloading and Installing the Design
3.4. Setting Up your Development Board for the Drive-on-Chip Design Example for Agilex 5 Devices
3.5. Configuring the FPGA Hardware for the Drive-on-Chip Design Example for Agilex 5 Devices
3.6. Programming the Nios V/g Software to the Device for the Drive-on-Chip Design Example for Agilex Devices
3.7. Debugging and Monitoring the Drive-on-Chip Design Example for Agilex 5 Devices with Python GUI
8.3.6.1. DSP Builder Model for the Drive-on-Chip Designs
8.3.6.2. Avalon Memory-Mapped Interface
8.3.6.3. About DSP Builder for Intel FPGAs
8.3.6.4. DSP Builder for Intel FPGAs Folding
8.3.6.5. DSP Builder for Intel FPGAs Design Guidelines
8.3.6.6. Generating VHDL for the DSP Builder Models for the Drive-on-Chip Designs
8.4. Motor and Power Board Model
The Drive-on-Chip Design Example for Intel Agilex Devices implements a motor and power board model instead of a real motor kit. The motor and power board model is a DSP Builder model, which generates the RTL for the motor and power board model.
By integrating the Avalon interface, motor parameters are accurately configured to represent a tandem motor kit. You can experiment with the design without investing in an expensive motor kit. You can explore and optimize your designs. The motor model included in this design example is based on the Tandem Motion 48V power board parameter specifications with a Tamagawa TS4747N3200E600 motor.