AN 1000: Drive-on-Chip Design Example: Agilex™ 5 Devices
ID
826207
Date
7/08/2024
Public
1. About the Drive-on-Chip Design Example for Agilex™ 5 Devices
2. Features of the Drive-on-Chip Design Example for Agilex Devices
3. Getting Started with the Drive-on-Chip Design Example
4. Rebuilding the Drive-on-Chip Design Example
5. Modifying the Design Example for a Different Board
6. About the Scaling of Feedback Signals
7. Motor Control Software
8. Functional Description of the Drive-on-Chip Design Example for Agilex 5 Devices
9. Signals
10. Registers
11. Design Security Recommendations
12. Document Revision History for AN 1000: Drive-on-Chip Design Example for Agilex™ 5 Devices
3.1. Software Requirements for the Drive-on-Chip Design Example for Agilex 5 Devices
3.2. Hardware Requirements for the Drive-on-Chip Design Example for Agilex 5 Devices
3.3. Downloading and Installing the Design
3.4. Setting Up your Development Board for the Drive-on-Chip Design Example for Agilex 5 Devices
3.5. Configuring the FPGA Hardware for the Drive-on-Chip Design Example for Agilex 5 Devices
3.6. Programming the Nios V/g Software to the Device for the Drive-on-Chip Design Example for Agilex Devices
3.7. Debugging and Monitoring the Drive-on-Chip Design Example for Agilex 5 Devices with Python GUI
8.3.6.1. DSP Builder Model for the Drive-on-Chip Designs
8.3.6.2. Avalon Memory-Mapped Interface
8.3.6.3. About DSP Builder for Intel FPGAs
8.3.6.4. DSP Builder for Intel FPGAs Folding
8.3.6.5. DSP Builder for Intel FPGAs Design Guidelines
8.3.6.6. Generating VHDL for the DSP Builder Models for the Drive-on-Chip Designs
11. Design Security Recommendations
Follow these recommendations if you use the Drive-on-Chip Design Example as the basis for a commercial product:
- Add more checks on current, voltage, and gain values in the design to ensure all the parameters are in the correct range.
- Analyze the security risk of incorrect use of the JTAG interface while implementing the design. Incorrect use of the JTAG interface can cause system malfunction and damage the power electronics, motors, or machinery that the design drives. It might even create a hazard to people working with the design.
- Ensure you follow guidelines for secure use of JTAG to protect the system from any unauthorized write or read accesses.