GTS Transceiver PHY User Guide: Agilex™ 5 FPGAs and SoCs
ID
817660
Date
10/17/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
A. Transceiver Toolkit Helper Script
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 5 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. Dynamically Reconfigurable PHY Settings
3.3.4. TX Datapath Options
3.3.5. RX Datapath Options
3.3.6. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.7. FEC Options
3.3.8. PCS Options
3.3.9. Avalon® Memory-Mapped Interface Options
3.3.10. Register Map IP-XACT Support
3.3.11. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. TX PMA Control Signals
3.5.7. RX PMA Status Signals
3.5.8. TX and RX PMA and Core Interface FIFO Signals
3.5.9. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Equalization Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY IP Example Design
6.7. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.8. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.9. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.10. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.11. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.12. Hardware Testing the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
3.3.11.1. User Guidelines for Setting the TX Equalizer in Loopback Mode
You can use the following recommended settings for the GTS TX PMA equalizer if you are running the Agilex™ 5 GTS transceiver in a loopback mode. Depending on your loopback module, whether it is a cable, optical module or loopback card, follow the recommended TX PMA equalizer setting and the estimated loss value in the table to establish the baseline setting.
- Determine loopback path characteristics: First identify the reach mode and insertion loss information of the TX to RX loopback path. You should include all components such as connectors, loopback modules, cables, and PCB traces in your transmission link when you are assessing the total insertion loss value.
- Refer to the recommended settings: Refer to the provided table and identify the recommended TX equalizer settings that correspond to your total identified insertion loss value.
- Apply the optimum settings: Configure the GTS TX PMA equalizer with the recommended settings for best loopback performance in the Agilex™ 5 GTS transceiver.
Note: You can also use the Transceiver Toolkit to find other TX equalizer settings for your high-speed link, The table below serves as the baseline setting with the estimated insertion loss value and data rate on the link you are testing with the GTS TX to RX PMA loopback.
| Data Rate | Reach Mode | Insertion Loss (X) | TX Equalizer | |||
|---|---|---|---|---|---|---|
| Pre Tap 2 | Pre Tap 1 | Main Tap | Post Tap1 | |||
| Up to 17.16Gbps | VSR | X ≤ 10dB | 0 | 0 | 55 | 0 |
| MR | 10dB < X ≤ 20dB | 0 | 5 | 55 | 0 | |
| LR | 20dB < X < 30dB | 0 | 10 | 55 | 0 | |
| 17.16Gbps to 28.1Gbps | VSR | X ≤ 10dB | 0 | 0 | 55 | 0 |
| MR | 10dB < X ≤ 20dB | 0 | 7 | 55 | 0 | |
| LR | 20dB < X < 30dB | 0 | 10 | 55 | 0 | |