A newer version of this document is available. Customers should click here to go to the newest version.
1. Agilex™ 5 Clocking and PLL Overview
2. Agilex™ 5 Clocking and PLL Architecture and Features
3. Agilex™ 5 Clocking and PLL Design Considerations
4. Clock Control Intel® FPGA IP Core
5. IOPLL Intel® FPGA IP Core
6. Document Revision History for the Clocking and PLL User Guide: Agilex™ 5 FPGAs and SoCs
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Locations
2.2.4. PLL Architecture
2.2.5. PLL Control Signals
2.2.6. PLL Feedback Modes
2.2.7. Clock Multiplication and Division
2.2.8. Programmable Phase Shift
2.2.9. Programmable Duty Cycle
2.2.10. PLL Cascading
2.2.11. PLL Input Clock Switchover
2.2.12. PLL Reconfiguration and Dynamic Phase Shift
2.2.13. PLL Calibration
3.1. Guidelines: Clock Switchover
3.2. Guidelines: Timing Closure
3.3. Guidelines: Resetting the PLL
3.4. Guidelines: Configuration Constraints
3.5. Clocking Constraints
3.6. IP Core Constraints
3.7. Guideline: Achieving 5% Duty Cycle for fOUT_EXT ≥ 300 MHz Using tx_outclk Port from LVDS SERDES Intel® FPGA IP
2.1.3.1.4. LAB Clock Gate
The Agilex™ 5 LAB register has built-in clock gating functionality. The register clock enable mechanism is a hardened data feedback, as shown in the Clock Gating and Clock Divider in Agilex™ 5 Clock Network diagram. The LAB clock gate offers no associated power savings because this is a purely functional clock enable.
The Quartus® Prime Analysis & Synthesis stage of the Compiler infers a LAB clock gate from a behavioral description of clock gating in the register transfer level (RTL). If you want a physical clock gate, you must instantiate it explicitly.