1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Configuration and Booting Solutions
5. Nios® V Processor - Using the MicroC/TCP-IP Stack
6. Nios® V Processor Debugging, Verifying, and Simulating
7. Nios® V Processor — Remote System Update
8. Nios® V Processor — Using Custom Instruction
9. Nios® V Embedded Processor Design Handbook Archives
10. Document Revision History for the Nios® V Embedded Processor Design Handbook
2.1. Creating Nios® V Processor System Design with Platform Designer
2.2. Integrating Platform Designer System into the Quartus® Prime Project
2.3. Designing a Nios® V Processor Memory System
2.4. Clocks and Resets Best Practices
2.5. Assigning a Default Agent
2.6. Assigning a UART Agent for Printing
2.7. JTAG Signals
2.8. Optimizing Platform Designer System Performance
4.1. Introduction
4.2. Linking Applications
4.3. Nios® V Processor Booting Methods
4.4. Introduction to Nios® V Processor Booting Methods
4.5. Nios® V Processor Booting from On-Chip Flash (UFM)
4.6. Nios® V Processor Booting from General Purpose QSPI Flash
4.7. Nios® V Processor Booting from Configuration QSPI Flash
4.8. Nios® V Processor Booting from On-Chip Memory (OCRAM)
4.9. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
4.10. Summary of Nios® V Processor Vector Configuration and BSP Settings
4.11. Reducing Nios® V Processor Booting Time
6.2.3.2.1. Enabling Signal Tap Logic Analyzer
6.2.3.2.2. Adding Signals for Monitoring and Debugging
6.2.3.2.3. Specifying Trigger Conditions
6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
6.2.3.2.5. Compiling the Design and Programming the Target Device
6.6.1. Prerequisites
6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
6.6.3. Creating Nios V Processor Software
6.6.4. Generating Memory Initialization File
6.6.5. Generating System Simulation Files
6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line
6.2.4. In-System Sources and Probes
Traditional debugging techniques often involve using an external pattern generator to exercise the logic and a logic analyzer to study the output waveforms during run time. The Signal Tap Logic Analyzer and In-System Sources and Probes allow you to read or tap internal logic signals during run time to debug your logic design.
You can make the debugging cycle more efficient when you can drive any internal signal manually within your design, which allows you to perform the following actions:
- Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer.
- Create simple test vectors to exercise your design without using external test equipment.
- Dynamically control run time control signals(e.g. system reset) with the JTAG chain.
Related Information