1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Configuration and Booting Solutions
5. Nios® V Processor - Using the MicroC/TCP-IP Stack
6. Nios® V Processor Debugging, Verifying, and Simulating
7. Nios® V Processor — Remote System Update
8. Nios® V Processor — Using Custom Instruction
9. Nios® V Embedded Processor Design Handbook Archives
10. Document Revision History for the Nios® V Embedded Processor Design Handbook
2.1. Creating Nios® V Processor System Design with Platform Designer
2.2. Integrating Platform Designer System into the Quartus® Prime Project
2.3. Designing a Nios® V Processor Memory System
2.4. Clocks and Resets Best Practices
2.5. Assigning a Default Agent
2.6. Assigning a UART Agent for Printing
2.7. JTAG Signals
2.8. Optimizing Platform Designer System Performance
4.1. Introduction
4.2. Linking Applications
4.3. Nios® V Processor Booting Methods
4.4. Introduction to Nios® V Processor Booting Methods
4.5. Nios® V Processor Booting from On-Chip Flash (UFM)
4.6. Nios® V Processor Booting from General Purpose QSPI Flash
4.7. Nios® V Processor Booting from Configuration QSPI Flash
4.8. Nios® V Processor Booting from On-Chip Memory (OCRAM)
4.9. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
4.10. Summary of Nios® V Processor Vector Configuration and BSP Settings
4.11. Reducing Nios® V Processor Booting Time
6.2.3.2.1. Enabling Signal Tap Logic Analyzer
6.2.3.2.2. Adding Signals for Monitoring and Debugging
6.2.3.2.3. Specifying Trigger Conditions
6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
6.2.3.2.5. Compiling the Design and Programming the Target Device
6.6.1. Prerequisites
6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
6.6.3. Creating Nios V Processor Software
6.6.4. Generating Memory Initialization File
6.6.5. Generating System Simulation Files
6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line
2.3.1.4.1. Address Span Extender IP
The Address Span Extender Altera® FPGA IP allows memory-mapped host interfaces to access a larger or smaller address map than the width of their address signals allows. The Address Span Extender IP splits the addressable space into multiple separate windows so that the host can access the appropriate part of the memory through the window.
The Address Span Extender does not limit host and agent widths to a 32-bit and 64-bit configuration. You can use the Address Span Extender with 1-64 bit address windows.
Figure 13. Address Span Extender Altera® FPGA IP
Related Information