Embedded Peripherals IP User Guide

ID 683130
Date 10/24/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Serial Peripheral Interface Core 3. SPI Core 4. SPI Agent/JTAG to Avalon® Host Bridge Cores 5. Intel eSPI Agent Core 6. eSPI to LPC Bridge Core 7. Ethernet MDIO Core 8. Intel FPGA 16550 Compatible UART Core 9. UART Core 10. Lightweight UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. EPCS/EPCQA Serial Flash Controller Core 17. Intel FPGA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller II Core 19. Intel FPGA Generic QUAD SPI Controller Core 20. Intel FPGA Generic QUAD SPI Controller II Core 21. Interval Timer Core 22. Intel FPGA Avalon FIFO Memory Core 23. On-Chip Memory (RAM and ROM) Intel FPGA IP 24. On-Chip Memory II (RAM or ROM) Intel FPGA IP 25. PIO Core 26. PLL Cores 27. DMA Controller Core 28. Modular Scatter-Gather DMA Core 29. Scatter-Gather DMA Controller Core 30. Video Sync Generator and Pixel Converter Cores 31. Intel FPGA Interrupt Latency Counter Core 32. Performance Counter Unit Core 33. Vectored Interrupt Controller Core 34. System ID Peripheral Core 35. Intel FPGA GMII to RGMII Converter Core 36. HPS GMII to RGMII Adapter IP 37. Intel FPGA MII to RMII Converter Core 38. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core IP 39. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 40. Intel FPGA MSI to GIC Generator Core 41. Cache Coherency Translator IP 42. Altera ACE5-Lite Cache Coherency Translator

3.4.3.4. control Register

The control register consists of data bits to control the SPI core's operation. A host peripheral can read control at any time without changing the value of any bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register control interrupts for status conditions represented in the status register. For example, bit 1 of status is ROE (receiver-overrun error), and bit 1 of control is IROE, which enables interrupts for the ROE condition. The SPI core asserts an interrupt request when the corresponding bits in status and control are both 1.

Table 11.  control Register Bits
# Name Description
3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.
4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.
6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.
7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.
8 IE Setting IE to 1 enables interrupts for any error condition.
9 IEOP Setting IEOP to 1 enables interrupts for the End of Packet condition.
10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial shift operation is in progress or not. The slaveselect register controls which ss_n outputs are asserted. SSO can be used to transmit or receive data of arbitrary size, for example, greater than 32 bits.

After reset, all bits of the control register are set to 0. All interrupts are disabled and no ss_n signals are asserted.