Embedded Peripherals IP User Guide

ID 683130
Date 10/24/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Serial Peripheral Interface Core 3. SPI Core 4. SPI Agent/JTAG to Avalon® Host Bridge Cores 5. Intel eSPI Agent Core 6. eSPI to LPC Bridge Core 7. Ethernet MDIO Core 8. Intel FPGA 16550 Compatible UART Core 9. UART Core 10. Lightweight UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. EPCS/EPCQA Serial Flash Controller Core 17. Intel FPGA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller II Core 19. Intel FPGA Generic QUAD SPI Controller Core 20. Intel FPGA Generic QUAD SPI Controller II Core 21. Interval Timer Core 22. Intel FPGA Avalon FIFO Memory Core 23. On-Chip Memory (RAM and ROM) Intel FPGA IP 24. On-Chip Memory II (RAM or ROM) Intel FPGA IP 25. PIO Core 26. PLL Cores 27. DMA Controller Core 28. Modular Scatter-Gather DMA Core 29. Scatter-Gather DMA Controller Core 30. Video Sync Generator and Pixel Converter Cores 31. Intel FPGA Interrupt Latency Counter Core 32. Performance Counter Unit Core 33. Vectored Interrupt Controller Core 34. System ID Peripheral Core 35. Intel FPGA GMII to RGMII Converter Core 36. HPS GMII to RGMII Adapter IP 37. Intel FPGA MII to RMII Converter Core 38. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core IP 39. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 40. Intel FPGA MSI to GIC Generator Core 41. Cache Coherency Translator IP 42. Altera ACE5-Lite Cache Coherency Translator

11.3.1.1. Write FIFO Settings

The write FIFO buffers data flowing from the Avalon® interface to the host. The following settings are available:

  • Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only powers of two are allowed. Larger values consume more on-chip memory resources. A depth of 64 is generally optimal for performance, and larger values are rarely necessary.
  • IRQ Threshold—The write IRQ threshold governs how the core asserts its IRQ in response to the FIFO emptying. As the JTAG circuitry empties data from the write FIFO, the core asserts its IRQ when the number of characters remaining in the FIFO reaches this threshold value. For maximum bandwidth, a processor should service the interrupt by writing more data and preventing the write FIFO from emptying completely. A value of 8 is typically optimal. See the Interrupt Behavior section for further details.
  • Construct using registers instead of memory blocks—Turning on this option causes the FIFO to be constructed out of on-chip logic resources. This option is useful when memory resources are limited. Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth of 8 (bytes) consumes roughly 88 LEs.
  • Printing Method—Set one of the printing methods as shown:
    Table 115.  Printing Method Settings
    Printing Method Description
    Print upon new character This method allows the JTAG UART to print a character sequentially.
    Print upon newline This method allows the JTAG UART to buffer the characters and print the buffer when there is a newline (\n).
    Note: Do not apply Print upon newline if there is no newline (\n) in the string.