Embedded Peripherals IP User Guide

ID 683130
Date 10/24/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Serial Peripheral Interface Core 3. SPI Core 4. SPI Agent/JTAG to Avalon® Host Bridge Cores 5. Intel eSPI Agent Core 6. eSPI to LPC Bridge Core 7. Ethernet MDIO Core 8. Intel FPGA 16550 Compatible UART Core 9. UART Core 10. Lightweight UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. EPCS/EPCQA Serial Flash Controller Core 17. Intel FPGA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller II Core 19. Intel FPGA Generic QUAD SPI Controller Core 20. Intel FPGA Generic QUAD SPI Controller II Core 21. Interval Timer Core 22. Intel FPGA Avalon FIFO Memory Core 23. On-Chip Memory (RAM and ROM) Intel FPGA IP 24. On-Chip Memory II (RAM or ROM) Intel FPGA IP 25. PIO Core 26. PLL Cores 27. DMA Controller Core 28. Modular Scatter-Gather DMA Core 29. Scatter-Gather DMA Controller Core 30. Video Sync Generator and Pixel Converter Cores 31. Intel FPGA Interrupt Latency Counter Core 32. Performance Counter Unit Core 33. Vectored Interrupt Controller Core 34. System ID Peripheral Core 35. Intel FPGA GMII to RGMII Converter Core 36. HPS GMII to RGMII Adapter IP 37. Intel FPGA MII to RMII Converter Core 38. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core IP 39. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 40. Intel FPGA MSI to GIC Generator Core 41. Cache Coherency Translator IP 42. Altera ACE5-Lite Cache Coherency Translator

12.2. Functional Description

Intel FPGA Avalon® Mailbox provides two 32-bit registers for message passing between processors, Command register (0x0) and Pointer register (0x1). The message sender processor and message receiver processor have individual Avalon® Memory Mapped ( Avalon® -MM) interfaces to a Mailbox component. A write to the command register by the sender processor indicates a pending message in the Mailbox and an interrupt will be issued to the receiver processor. Upon retrieval of the message by the receiver processor via a read transaction, the message is consumed, Mailbox is empty. The status register (0x2) is used to indicate if the Mailbox is full or empty.

The Mailbox Avalon® -MM interface which receives messages, or identified as sender interface, will back pressure the sender if there is message pending in the Mailbox. This will ensure every single message passed into the Mailbox is not overwritten. Upon message arrival, the receiving processor will then receive a level interrupt by the Mailbox. The interrupt will hold high until the single message is retrieved from the Mailbox via the Avalon® -MM interface of receiving processor.

In addition, the Interrupt Masking Register (0x3) is writable by the Avalon® -MM interface to mask its dedicated interrupt output. For example, receiver interface will be able to set the mask bit to mask off the message pending interrupt generated by Mailbox. Meanwhile, sender interface will be able to set the mask bit to mask off the message space interrupt output.

Figure 42.  Intel FPGA Avalon® Mailbox (simple) Block Diagram

The Mailbox is clocked with single source. Both of the Avalon® -MM Agent interfaces have its individual function to set and clear the Full bit and Message Pending bit. The Avalon® -MM Agent of the sender processor will only set the status bits, while the Avalon® -MM Agent of the receiver processor only clears the status bit.

An interrupt is derived from the Status register bits. It will remain high until the message in the Mailbox is read.