Embedded Peripherals IP User Guide

ID 683130
Date 10/24/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Serial Peripheral Interface Core 3. SPI Core 4. SPI Agent/JTAG to Avalon® Host Bridge Cores 5. Intel eSPI Agent Core 6. eSPI to LPC Bridge Core 7. Ethernet MDIO Core 8. Intel FPGA 16550 Compatible UART Core 9. UART Core 10. Lightweight UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. EPCS/EPCQA Serial Flash Controller Core 17. Intel FPGA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller II Core 19. Intel FPGA Generic QUAD SPI Controller Core 20. Intel FPGA Generic QUAD SPI Controller II Core 21. Interval Timer Core 22. Intel FPGA Avalon FIFO Memory Core 23. On-Chip Memory (RAM and ROM) Intel FPGA IP 24. On-Chip Memory II (RAM or ROM) Intel FPGA IP 25. PIO Core 26. PLL Cores 27. DMA Controller Core 28. Modular Scatter-Gather DMA Core 29. Scatter-Gather DMA Controller Core 30. Video Sync Generator and Pixel Converter Cores 31. Intel FPGA Interrupt Latency Counter Core 32. Performance Counter Unit Core 33. Vectored Interrupt Controller Core 34. System ID Peripheral Core 35. Intel FPGA GMII to RGMII Converter Core 36. HPS GMII to RGMII Adapter IP 37. Intel FPGA MII to RMII Converter Core 38. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core IP 39. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 40. Intel FPGA MSI to GIC Generator Core 41. Cache Coherency Translator IP 42. Altera ACE5-Lite Cache Coherency Translator

24.3.2.8.4. ECC Encoder Bypass

Note: ECC Encoder Bypass feature does not support Arria® 10 and Cyclone® 10 GX devices.

As described in ECC Block Diagram for M20K Memory in Figure 86, for M20K blocks, 8 parity bits are generated through the ECC encoder based on 32-bit input data width, resulting in up to a total of 40 bits of data width. In On-Chip Memory II IP, user can inject and flip the parity bits by enabling ECC Encoder Bypass feature in GUI. This feature dynamically flips the parity value generated in the encoder of M20K blocks to observe the ECC behavior through simulation.

By default, the encoder bypass is disabled, eccencbypass_ena bit of the CONTROL register is 0. To enable the encoder bypass, you are required to set eccencbypass_ena bit to 1 through the AXI-4 lite interface. The 8 parity bits can be injected to M20K through PARITY_RAM0 register.

The built-in ECC encoder values are XOR-ed with the 8 parity bits inputs to generate a new set of encoder value. When the ECC Encoder Bypass enable is low, the encoder generates the parity bits according to the data input during a write process.

Table 289.  Example of Setting the 8-Bit Parity InputThe following table shows an example to construct an 8-bit parity input.
Parity Bit Sequence ECC Feature Is the ECC Decoder able to Recognize and Correct the Data Bit?
00000001 Single-error Correction Yes
00000011 Double-adjacent-error Correction Yes
00000111 Triple-adjacent-error Correction Yes
00000101 Triple-adjacent-error Correction Yes
00010011 Non-adjacent double/triple Correction/Detection No guarantee
Table 290.  Example of Flipping the Parity Bit with User InputsThe following table shows the expected ECC status based on parity input.
Parity [7:0] ECC Status [1:0]
Internal Parity User Parity Input New Parity Correctable error (e) Uncorrectable error (ue)
1010 0011 0000 0000 1010 0011 0 0
1010 0011 0000 0001 1010 0010 1 0
1010 0011 0000 0011 1010 0000 1 0
1010 0011 0000 0111 1010 0100 1 0
1010 0011 0000 0010 1010 0001 1 0
1010 0011 0000 0110 1010 0101 1 0
1010 0011 0000 1110 1010 1101 1 0
1010 0011 0010 1001 1000 1010 X X36
1010 0011 1111 1111 0101 1100 X36 X36
36 *For non-adjacent of two-bit or more and 4-adjacent-errors are not guaranteed to be detectable or correctable.