GTS Dynamic Reconfiguration Controller IP User Guide: Agilex™ 5 FPGAs and SoCs
ID
849710
Date
10/22/2025
Public
1. Overview
2. Quick Start Guide
3. Configuring and Generating the IP
4. Integrating the GTS Dynamic Reconfiguration Controller IP With Your Application
5. Designing with the IP Core
6. Designing the IP Solution
7. Sharing Clocking and Applying SDC Constraints
8. Runtime Flow
9. Simulating the IP
10. Validating the IP
11. Appendix A: Functional Description
12. Registers
13. Document Revision History for the GTS Dynamic Reconfiguration Controller IP User Guide
3.1. Configuring the Quartus® Prime Pro Edition Project
3.2. Generating Dynamic Reconfiguration Design and Configuration Profiles
3.3. Generating HDL for Synthesis and Simulation
3.4. Using the HSSI Support Logic Assignment Editor
3.5. HSSI Support Logic Generation
3.6. Generating the Design Example
3.7. Compiling the Design Example
9.1. Design Example Features
9.2. Simulating the GTS PMA/FEC Direct PHY Altera FPGA IP Example Design Testbench
9.3. Simulating the Ethernet to CPRI Dynamic Reconfiguration Altera FPGA IP Design Example Testbench
9.4. Simulating the GTS PTP/CPRI Multirate FPGA IP Design Example Testbench
9.5. Simulating the GTS Triple-Speed Ethernet (TSE)/Multirate Ethernet IP Design Example Testbench
10.1. Testing the Hardware Design Example for PMA Direct PHY Multirate
10.2. Testing the Hardware Design Example for Ethernet to CPRI
10.3. Testing the Hardware Design Example for PTP/CPRI Multirate
10.4. Testing the Hardware Design Example for TSE/Multirate Ethernet
10.5. Troubleshooting and Debugging Issues
12.1.1. Register Next ID Configuration 0
12.1.2. Register Next ID Configuration 1
12.1.3. Register Next ID Configuration 2
12.1.4. Register Next ID Configuration 3
12.1.5. Register Next ID Configuration 4
12.1.6. Register Next ID Configuration 5
12.1.7. Register Next ID Configuration 6
12.1.8. Register Next ID Configuration 7
12.1.9. Register Next ID Configuration 8
12.1.10. Register Next ID Configuration 9
12.1.11. Register Next ID Configuration 10
12.1.12. Register Next ID Configuration 11
12.1.13. Register Next ID Configuration 12
12.1.14. Register Next ID Configuration 13
12.1.15. Register Next ID Configuration 14
12.1.16. Register Next ID Configuration 15
12.1.17. Register Next ID Configuration 16
12.1.18. Register Next ID Configuration 17
12.1.19. Register Next ID Configuration 18
12.1.20. Register Next ID Configuration 19
12.1.21. Register Trigger
12.1.22. Register Trigger Status
12.1.23. Register Error Configuration
12.1.24. Register Error Status
1.1.5. Device Family Support
The following table defines the IP core support levels for Altera® FPGA device families and states the level of support available in the current release:
| Device Support Level | Definition |
|---|---|
| Advance | The IP core is available for simulation and compilation for this device family. Timing models include initial engineering estimates of delays based on early post-layout information. The timing models are subject to change as silicon testing improves the correlation between the actual silicon and the timing models. You can use this IP core for system architecture and resource utilization studies, simulation, pinout, system latency assessments, basic timing assessments (pipeline budgeting), and I/O transfer strategy (datapath width, burst depth, I/O standards trade-offs). |
| Preliminary | The IP core is verified with preliminary timing models for this device family. The IP core meets all functional requirements but might still be undergoing timing analysis for the device family. It can be used in production designs with caution. |
| Final | The IP core is verified with final timing models for this device family. The IP core meets all functional and timing requirements for the device family and can be used in production designs. |
| Device Family | Support |
|---|---|
| Agilex™ 5 E-Series (Device Group B) | Preliminary |
Agilex™ 5 E-Series (Device Group A) |
Advance |