Visible to Intel only — GUID: mvp1532933311681
Ixiasoft
1. Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
2. Agilex™ 5 Configuration Details
3. Agilex™ 5 Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Agilex™ 5 Configuration Features
7. Agilex™ 5 Debugging Guide
8. Document Revision History for the Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Parallel Flash Loader II Intel® FPGA IP (PFL II)
3.1.7.1. Functional Description
3.1.7.2. Designing with the Parallel Flash Loader II Intel® FPGA IP for Avalon-ST Single Device Configuration
3.1.7.3. Generating the Parallel Flash Loader II Intel® FPGA IP
3.1.7.4. Constraining the Parallel Flash Loader II Intel® FPGA IP
3.1.7.5. Using the Parallel Flash Loader II Intel® FPGA IP
3.1.7.6. Supported Flash Memory Devices
3.1.7.3.1. Controlling Avalon-ST Configuration with Parallel Flash Loader II Intel® FPGA IP
3.1.7.3.2. Mapping Parallel Flash Loader II Intel® FPGA IP and Flash Address
3.1.7.3.3. Creating a Single Parallel Flash Loader II Intel® FPGA IP for Programming and Configuration
3.1.7.3.4. Creating Separate Parallel Flash Loader II Intel® FPGA IP Functions
3.1.7.4.1. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. Parallel Flash Loader II Intel® FPGA IP Recommended Constraints for Other Input Pins
3.1.7.4.5. Parallel Flash Loader II Intel® FPGA IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Agilex™ 5 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. Understanding and Troubleshooting Configuration Pin Behavior
7.8. Configuration Debugger Tool
Visible to Intel only — GUID: mvp1532933311681
Ixiasoft
5.6.1. Prerequisites
To run this remote system update example, your system must meet the following hardware and software requirements:
- You should create and download this example to the Agilex™ 5 SoC Development Kit.
- Your design should include the Mailbox Client Intel® FPGA IP that connects to a JTAG to Avalon® Master Bridge as shown the Platform Designer system. The JTAG to Avalon® Master Bridge acts as the remote system update host controller for your factory and application images.
- In addition, your design must include the Reset Release Intel® FPGA IP. This component holds the design in reset until the entire FPGA fabric has entered user mode.
- The ninit_done_reset and reset_bridge_1 components create a two-stage reset synchronizer to release the Mailbox Client Intel® FPGA IP and JTAG to Avalon® Master Bridge Intel® FPGA IP from reset when the device configuration is complete and the device is in user mode.
- The ninit_done output signal from Reset Release Intel® FPGA IP gates this reset by connecting to the ninit_done_reset in_reset pin.
- The reset_in Reset Bridge Intel® FPGA IP provides a user mode reset. In this design, the exported resetpin connects to application logic.
-
Figure 77. Required Communication and Host Components for the Remote System Update Design Example