Visible to Intel only — GUID: GUID-A7A31697-287E-4ECC-9067-1FCA4382D28F
LAPACKE_zheevx Example Program in C for Row Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_zheevx Example.
=======================
Program computes eigenvalues specified by a selected range of values
and corresponding eigenvectors of a complex Hermitian matrix A:
( 6.51, 0.00) ( -5.92, 9.53) ( -2.46, 2.91) ( 8.84, 3.21)
( -5.92, -9.53) ( -1.73, 0.00) ( 6.50, 2.09) ( 1.32, 8.81)
( -2.46, -2.91) ( 6.50, -2.09) ( 6.90, 0.00) ( -0.59, 2.47)
( 8.84, -3.21) ( 1.32, -8.81) ( -0.59, -2.47) ( -2.85, 0.00)
Description.
============
The routine computes selected eigenvalues and, optionally, eigenvectors of
an n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
Eigenvalues and eigenvectors can be selected by specifying either a range
of values or a range of indices for the desired eigenvalues.
Example Program Results.
========================
LAPACKE_zheevx (row-major, high-level) Example Program Results
The total number of eigenvalues found: 3
Selected eigenvalues
0.09 9.53 18.75
Selected eigenvectors (stored columnwise)
( 0.18, 0.00) ( -0.54, 0.00) ( 0.67, 0.00)
( -0.40, -0.31) ( -0.21, -0.17) ( -0.30, -0.43)
( 0.60, 0.40) ( -0.35, -0.28) ( -0.39, -0.34)
( -0.34, 0.26) ( -0.57, 0.35) ( 0.05, 0.05)
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda );
/* Parameters */
#define N 4
#define LDA N
#define LDZ N
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, lda = LDA, ldz = LDZ, il, iu, m, info;
double abstol, vl, vu;
/* Local arrays */
MKL_INT ifail[N];
double w[N];
MKL_Complex16 z[LDZ*N];
MKL_Complex16 a[LDA*N] = {
{ 6.51, 0.00}, { 0.00, 0.00}, { 0.00, 0.00}, { 0.00, 0.00},
{-5.92, -9.53}, {-1.73, 0.00}, { 0.00, 0.00}, { 0.00, 0.00},
{-2.46, -2.91}, { 6.50, -2.09}, { 6.90, 0.00}, { 0.00, 0.00},
{ 8.84, -3.21}, { 1.32, -8.81}, {-0.59, -2.47}, {-2.85, 0.00}
};
/* Executable statements */
printf( "LAPACKE_zheevx (row-major, high-level) Example Program Results\n" );
/* Negative abstol means using the default value */
abstol = -1.0;
/* Set VL, VU to compute eigenvalues in half-open (VL,VU] interval */
vl = 0.0;
vu = 100.0;
/* Solve eigenproblem */
info = LAPACKE_zheevx( LAPACK_ROW_MAJOR, 'V', 'V', 'L', n, a, lda,
vl, vu, il, iu, abstol, &m, w, z, ldz, ifail );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print the number of eigenvalues found */
printf( "\n The total number of eigenvalues found:%2i\n", m );
/* Print eigenvalues */
print_rmatrix( "Selected eigenvalues", 1, m, w, 1 );
/* Print eigenvectors */
print_matrix( "Selected eigenvectors (stored columnwise)", n, m, z, ldz );
exit( 0 );
} /* End of LAPACKE_zheevx Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
printf( "\n" );
}
}
Parent topic: ZHEEVX Example