Visible to Intel only — GUID: GUID-B2034333-58AD-41FE-AEC4-6456C0E1B6DA
LAPACKE_csysv Example Program in C for Row Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_csysv Example.
======================
The program computes the solution to the system of linear equations
with a complex symmetric matrix A and multiple right-hand sides B,
where A is the coefficient matrix:
( 9.99, -4.73) ( -5.68, -0.80) ( -8.94, 1.32) ( -9.42, 2.05)
( -5.68, -0.80) ( -8.01, 4.61) ( 1.64, -6.29) ( 6.79, -2.17)
( -8.94, 1.32) ( 1.64, -6.29) ( 9.04, 3.96) ( -4.51, -7.54)
( -9.42, 2.05) ( 6.79, -2.17) ( -4.51, -7.54) ( 0.40, 4.06)
and B is the right-hand side matrix:
( 5.71, -1.20) ( 2.84, -0.18)
( -7.70, 6.47) ( -8.29, -1.72)
( 3.77, -7.40) ( -4.28, -8.25)
( -3.78, 0.33) ( -2.70, -0.39)
Description.
============
The routine solves for X the complex system of linear equations A*X = B,
where A is an n-by-n symmetric matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding
solutions.
The diagonal pivoting method is used to factor A as A = U*D*UT or
A = L*D*LT , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
The factored form of A is then used to solve the system of equations A*X = B.
Example Program Results.
========================
LAPACKE_csysv (row-major, high-level) Example Program Results
Solution
( 0.13, 0.13) ( 0.63, 0.34)
( 0.32, -0.07) ( 0.61, 0.21)
( -0.26, -0.44) ( -0.01, -0.10)
( -0.40, 0.51) ( 0.21, 0.02)
Details of factorization
(-16.42, 1.69) ( -0.53, 0.35) ( 0.36, 0.41) ( -0.78, 0.49)
( 0.00, 0.00) ( 3.69, 0.64) (-16.58, -1.61) ( -0.10, -0.65)
( 0.00, 0.00) ( 0.00, 0.00) ( 1.02, -3.74) ( -0.73, -0.52)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 9.04, 3.96)
Pivot indices
1 -1 -1 3
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a );
/* Parameters */
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
/* Local arrays */
MKL_INT ipiv[N];
MKL_Complex8 a[LDA*N] = {
{ 9.99f, -4.73f}, {-5.68f, -0.80f}, {-8.94f, 1.32f}, {-9.42f, 2.05f},
{ 0.00f, 0.00f}, {-8.01f, 4.61f}, { 1.64f, -6.29f}, { 6.79f, -2.17f},
{ 0.00f, 0.00f}, { 0.00f, 0.00f}, { 9.04f, 3.96f}, {-4.51f, -7.54f},
{ 0.00f, 0.00f}, { 0.00f, 0.00f}, { 0.00f, 0.00f}, { 0.40f, 4.06f}
};
MKL_Complex8 b[LDB*N] = {
{ 5.71f, -1.20f}, { 2.84f, -0.18f},
{-7.70f, 6.47f}, {-8.29f, -1.72f},
{ 3.77f, -7.40f}, {-4.28f, -8.25f},
{-3.78f, 0.33f}, {-2.70f, -0.39f}
};
/* Executable statements */
printf( "LAPACKE_csysv (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_csysv( LAPACK_ROW_MAJOR, 'U', n, nrhs, a, lda, ipiv,
b, ldb );
/* Check for the exact singularity */
if( info > 0 ) {
printf( "The element of the diagonal factor " );
printf( "D(%i,%i) is zero, so that D is singular;\n", info, info );
printf( "the solution could not be computed.\n" );
exit( 1 );
}
/* Print solution */
print_matrix( "Solution", n, nrhs, b, ldb );
/* Print details of factorization */
print_matrix( "Details of factorization", n, n, a, lda );
/* Print pivot indices */
print_int_vector( "Pivot indices", n, ipiv );
exit( 0 );
} /* End of LAPACKE_csysv Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) {
MKL_INT j;
printf( "\n %s\n", desc );
for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
printf( "\n" );
}
Parent topic: CSYSV Example