Visible to Intel only — GUID: GUID-CAA0F75D-3BF4-48AD-8D6C-24D8D4FD55A4
DSYEVR Example Program in Fortran
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
* =============================================================================
*
* DSYEVR Example.
* ==============
*
* Program computes the smallest eigenvalues and the corresponding
* eigenvectors of a real symmetric matrix A using the Relatively Robust
* Representations, where A is:
*
* 0.67 -0.20 0.19 -1.06 0.46
* -0.20 3.82 -0.13 1.06 -0.48
* 0.19 -0.13 3.27 0.11 1.10
* -1.06 1.06 0.11 5.86 -0.98
* 0.46 -0.48 1.10 -0.98 3.54
*
* Description.
* ============
*
* The routine computes selected eigenvalues and, optionally, eigenvectors of
* an n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
*
* A*v(j) = lambda(j)*v(j)
*
* where lambda(j) is its eigenvalue. The computed eigenvectors are
* orthonormal.
* Eigenvalues and eigenvectors can be selected by specifying either a range
* of values or a range of indices for the desired eigenvalues.
*
* Example Program Results.
* ========================
*
* DSYEVR Example Program Results
*
* The total number of eigenvalues found: 3
*
* Selected eigenvalues
* 0.43 2.14 3.37
*
* Selected eigenvectors (stored columnwise)
* -0.98 -0.01 -0.08
* 0.01 0.02 -0.93
* 0.04 -0.69 -0.07
* -0.18 0.19 0.31
* 0.07 0.69 -0.13
* =============================================================================
*
* .. Parameters ..
INTEGER N, NSELECT
PARAMETER ( N = 5, NSELECT = 3 )
INTEGER LDA, LDZ
PARAMETER ( LDA = N, LDZ = N )
INTEGER LWMAX
PARAMETER ( LWMAX = 1000 )
*
* .. Local Scalars ..
INTEGER INFO, LWORK, LIWORK, IL, IU, M
DOUBLE PRECISION ABSTOL, VL, VU
*
* .. Local Arrays ..
INTEGER ISUPPZ( N ), IWORK( LWMAX )
DOUBLE PRECISION A( LDA, N ), W( N ), Z( LDZ, NSELECT ),
$ WORK( LWMAX )
DATA A/
$ 0.67, 0.00, 0.00, 0.00, 0.00,
$ -0.20, 3.82, 0.00, 0.00, 0.00,
$ 0.19,-0.13, 3.27, 0.00, 0.00,
$ -1.06, 1.06, 0.11, 5.86, 0.00,
$ 0.46,-0.48, 1.10,-0.98, 3.54
$ /
*
* .. External Subroutines ..
EXTERNAL DSYEVR
EXTERNAL PRINT_MATRIX
*
* .. Intrinsic Functions ..
INTRINSIC INT, MIN
*
* .. Executable Statements ..
WRITE(*,*)'DSYEVR Example Program Results'
* Negative ABSTOL means using the default value
ABSTOL = -1.0
* Set IL, IU to compute NSELECT smallest eigenvalues
IL = 1
IU = NSELECT
*
* Query the optimal workspace.
*
LWORK = -1
LIWORK = -1
CALL DSYEVR( 'Vectors', 'Indices', 'Upper', N, A, LDA, VL, VU, IL,
$ IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
LIWORK = MIN( LWMAX, IWORK( 1 ) )
*
* Solve eigenproblem.
*
CALL DSYEVR( 'Vectors', 'Indices', 'Upper', N, A, LDA, VL, VU, IL,
$ IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* Check for convergence.
*
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
STOP
END IF
*
* Print the number of eigenvalues found.
*
WRITE(*,'(/A,I2)')' The total number of eigenvalues found:', M
*
* Print eigenvalues.
*
CALL PRINT_MATRIX( 'Selected eigenvalues', 1, M, W, 1 )
*
* Print eigenvectors.
*
CALL PRINT_MATRIX( 'Selected eigenvectors (stored columnwise)',
$ N, M, Z, LDZ )
STOP
END
*
* End of DSYEVR Example.
*
* =============================================================================
*
* Auxiliary routine: printing a matrix.
*
SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
CHARACTER*(*) DESC
INTEGER M, N, LDA
DOUBLE PRECISION A( LDA, * )
*
INTEGER I, J
*
WRITE(*,*)
WRITE(*,*) DESC
DO I = 1, M
WRITE(*,9998) ( A( I, J ), J = 1, N )
END DO
*
9998 FORMAT( 11(:,1X,F6.2) )
RETURN
END
Parent topic: DSYEVR Example