Developer Reference

ID 766877
Date 12/20/2021
Public

## LAPACKE_zgels Example Program in C for Row Major Data Layout

/*******************************************************************************
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
LAPACKE_zgels Example.
======================

Program computes the minimum norm solution to the underdetermined linear
system A*X = B with full rank matrix A using LQ factorization,
where A is the coefficient matrix:

( -4.20, -3.44) ( -3.35,  1.52) (  1.73,  8.85) (  2.35,  0.34)
( -5.43, -8.81) ( -4.53, -8.47) (  5.93,  3.75) ( -3.75, -5.66)
( -5.56,  3.39) (  2.90, -9.22) (  8.03,  9.37) (  5.69, -0.47)

and B is the right-hand side matrix:

( -7.02,  4.80) (  3.88, -2.59)
(  0.62, -2.40) (  1.57,  3.24)
(  3.10, -2.19) ( -6.93, -5.99)

Description.
============

The routine solves overdetermined or underdetermined complex linear systems
involving an m-by-n matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.

Several right hand side vectors b and solution vectors x can be handled
in a single call; they are stored as the columns of the m-by-nrhs right
hand side matrix B and the n-by-nrhs solution matrix X.

Example Program Results.
========================

LAPACKE_zgels (row-major, high-level) Example Program Results

Minimum norm solution
( -0.25, -0.04) ( -0.21,  0.42)
(  0.99,  0.27) ( -0.21, -0.43)
(  0.25,  0.43) ( -0.24, -0.13)
( -0.32,  0.14) ( -0.23, -0.09)

Details of LQ factorization
( 11.40,  0.00) (  0.18, -0.14) ( -0.23, -0.52) ( -0.15,  0.01)
(  7.73, -0.39) ( 15.32,  0.00) ( -0.22,  0.42) (  0.45,  0.17)
(  8.60, -5.68) (  3.96,  6.46) ( 12.54,  0.00) ( -0.02, -0.47)
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda );

/* Parameters */
#define M 3
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS

/* Main program */
int main() {
/* Locals */
MKL_INT m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
/* Local arrays */
MKL_Complex16 a[LDA*M] = {
{-4.20, -3.44}, {-3.35,  1.52}, { 1.73,  8.85}, { 2.35,  0.34},
{-5.43, -8.81}, {-4.53, -8.47}, { 5.93,  3.75}, {-3.75, -5.66},
{-5.56,  3.39}, { 2.90, -9.22}, { 8.03,  9.37}, { 5.69, -0.47}
};
MKL_Complex16 b[LDB*N] = {
{-7.02,  4.80}, { 3.88, -2.59},
{ 0.62, -2.40}, { 1.57,  3.24},
{ 3.10, -2.19}, {-6.93, -5.99},
{ 0.00,  0.00}, { 0.00,  0.00}
};
/* Executable statements */
printf( "LAPACKE_zgels (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_zgels( LAPACK_ROW_MAJOR, 'N', m, n, nrhs, a, lda, b, ldb );
/* Check for the full rank */
if( info > 0 ) {
printf( "The diagonal element %i of the triangular factor ", info );
printf( "of A is zero, so that A does not have full rank;\n" );
printf( "the minimum norm solution could not be computed.\n" );
exit( 1 );
}
/* Print minimum norm solution */
print_matrix( "Minimum norm solution", n, nrhs, b, ldb );
/* Print details of LQ factorization */
print_matrix( "Details of LQ factorization", m, n, a, lda );
exit( 0 );
} /* End of LAPACKE_zgels Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}