A newer version of this document is available. Customers should click here to go to the newest version.
Visible to Intel only — GUID: vsd1708643479201
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory-Mapped Interface Signals
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Run-time Reset Sequence—TX
3.8.5. Run-time Reset Sequence—RX
3.8.6. Run-time Reset Sequence—TX + RX
3.8.7. RX Data Loss/CDR Lock Loss (Auto-Recovery)
3.8.8. TX PLL Lock Loss
3.8.9. TX PLL Lock Loss Auto-Recovery (Soft CSR Enabled)
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: vsd1708643479201
Ixiasoft
3.13.1.1. Direct Register Method Examples
The following examples demonstrate the direct register method to configure the GTS PMA.
TX Equalizer Co-efficients
To set the TX equalizer co-efficients:
- Write the TX equalizer pre_tap_2 register (0x9174C[29:27]) with valid value.
- Write the TX equalizer pre_tap_1 register (0x91750[9:5]) with valid value.
- Write the TX equalizer main_tap register (0x9174C[13:8]) with valid value.
- Write the TX equalizer post_tap_1 register (0x9174C[23:19]) with valid value.
Note: You can use the TX EQ Equalizer Tool to identify the most optimum value for the equalizer taps for your link.
Mute TX Output
To mute TX output (to configure TX output to 0 V):
- Set 0x91750[25:24] to 2’b11
- Set 0x91750[25:24] to 2’b00
TX to RX Parallel Loopback
To enable the TX to RX Parallel Loopback:
- Write 0x1 to 0x916A4[8]
- Write 0x0 to 0x916A4[8]
Polarity Inversion
For TX polarity inversion: 40
- Assert TX reset.
- TX polarity inversion:
- Write 0x1 to 0x91428[7]
- TX polarity inversion revert back:
- Write 0x0 to 0x91428[7]
- Deassert TX reset.
For RX polarity inversion: 40
- Assert RX reset.
- RX polarity inversion:
- Write 0x1 to 0x91428[6]
- RX polarity inversion revert back:
- Write 0x0 to 0x91428[6]
- Deassert RX reset.
Measuring the Bit Error Rate (BER)
- Check that the RX link is ready for the desired lane:
- Read 0x814[31:16]41 to confirm that the corresponding lane's rx_cdr_locked2data = 1
- Assign the PRBS pattern value:
- For TX: Write valid values to 0x916AC[31:28]
- For RX: Write valid values to 0x91428[3:0]
- Valid values for PRBS pattern are:
- PRBS7: 0x1
- PRBS9: 0x2
- PRBS10: 0x3
- PRBS13: 0x4
- PRBS15: 0x5
- PRBS23: 0x6
- PRBS31: 0x8
- To start the BER test:
- Write 0x1 to 0x916AC[23]
- Write 0x1 to 0x91424[26]
- Write 0x3 to 0x9176C[28:27]
- Write 0x3 to 0x915B4[19:18]
- To inject one bit of error (repeat the following two steps multiple times to inject multiple bits of error):
- Write 0x1 to 0x916AC[22]
- Write 0x0 to 0x916AC[22]
- To get the error count, read from 0x91444[31:0]
- To check overflow, read 0x9143C[21]: 1 = overflow, 0 = no overflow
- To clear the counter, toggle 0x915B4[19:18]:
- Write 0x0 to 0x915B4[19:18]
- Write 0x3 to 0x915B4[19:18]
- To stop the BER test:
- Write 0x0 to 0x916AC[23]
- Write 0x0 to 0x91424[26]
- Write 0x0 to 0x9176C[28:27]
- Write 0x0 to 0x915B4[19:18]
The sequence is valid only when you are using RX manual tuning (RX adaptation mode set to manual mode). If you are using RX auto adaptation, use the GTS attribute access method.
40 This feature support is preliminarily and not supported in hardware in the current Quartus® Prime Pro Edition software release.
41 Address 0x814 is part of the GTS PMA and FEC soft CSR register map.