1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Debugging, Verifying, and Simulating
5. Nios® V Processor Configuration and Booting Solutions
6. Finding Nios® V Processor Design Example
7. Nios® V Processor - Using the MicroC/TCP-IP Stack
8. Nios® V Processor — Remote System Update
9. Nios® V Processor — Using Custom Instruction
10. Nios® V Processor – Running TinyML Application
11. Nios® V Processor – Implementing Lockstep Capabilities
12. Nios® V Embedded Processor Design Handbook Archives
13. Document Revision History for the Nios® V Embedded Processor Design Handbook
2.1. Creating Nios® V Processor System Design with Platform Designer
2.2. Clocks and Resets Best Practices
2.3. Designing a Nios® V Processor Memory System
2.4. Assigning a UART Agent for Printing
2.5. Assigning a Default Agent
2.6. Understanding the Design Requirement with JTAG Signals
2.7. Optimizing Platform Designer System Performance
2.8. Integrating Platform Designer System into the Quartus® Prime Project
2.9. Handing Off to an Embedded FPGA Software Developer
4.2.3.2.1. Enabling Signal Tap Logic Analyzer
4.2.3.2.2. Adding Signals for Monitoring and Debugging
4.2.3.2.3. Specifying Trigger Conditions
4.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
4.2.3.2.5. Compiling the Design and Programming the Target Device
4.6.1. Prerequisites
4.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
4.6.3. Creating Nios V Processor Software
4.6.4. Generating Memory Initialization File
4.6.5. Generating System Simulation Files
4.6.6. Running Simulation in the QuestaSim Simulator Using Command Line
5.1. Introduction
5.2. Linking Applications
5.3. Nios® V Processor Booting Methods
5.4. Introduction to Nios® V Processor Booting Methods
5.5. Nios® V Processor Booting from On-Chip Flash (UFM)
5.6. Nios® V Processor Booting from General Purpose QSPI Flash
5.7. Nios® V Processor Booting from Configuration QSPI Flash
5.8. Nios® V Processor Booting from On-Chip Memory (OCRAM)
5.9. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
5.10. Summary of Nios® V Processor Vector Configuration and BSP Settings
5.11. Reducing Nios® V Processor Booting Time
5.6.2.4. QSPI Flash Programming
Generate Parallel Flash Loader
- Create a new MAX® 10 FPGA project.
- Instantiate a Parallel Flash Loader in the system.
- Configure the IP as follows:
- What operating mode will be used? Flash Programming
- What is the target flash? Quad SPI Flash
- How many flash devices will be used? 1
- What’s the Quad SPI flash device manufacturer? Micron
- What’s the Quad SPI flash device density? QSPI 512 Mbit
- Connect the IP interface as follows:
- flash_io0 - QSPI data 0
- flash_io1 - QSPI data 1
- flash_io2 - QSPI data 2
- flash_io3 - QSPI data 3
- flash_ncs - QSPI chip select
- flash_sck - QSPI clock
- pfl_flash_access_granted - VCC (1’b1)
- pfl_nreset - VCC (1’b1)
Figure 107. Interface Connection - Apply timing constraints.
Figure 108. Example Timing Constraints
derive_pll_clocks # JTAG Signal Constraints constrain the TCK port, assuming a 24MHz JTAG clock and 5ns delays create_clock -name {altera_reserved_tck} -period 41.667 [get_ports { altera_reserved_tck }] set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports altera_reserved_tdi] set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports altera_reserved_tms] set_output_delay -clock altera_reserved_tck 5 [get_ports altera_reserved_tdo] # #some clock uncertainty is required # derive_clock_uncertainty set_false_path -from [get_ports {flash_io1}] set_false_path -to [get_ports {flash_*}] - Compile the PFL design.
- Generate the PFL design SOF file.
Software POF File Programming into General Purpose QSPI
Note: You need to program the parallel flash loader into the MAX® 10 device before programming the QSPI flash.
- Program the PFL design SOF file using Quartus Programmer.
- Click on Auto-Detect after the PFL is successfully programmed.
- Click Yes to overwrite the existing JTAG chain.
- A new QSPI flash device will be shown on the screen, connected to Max 10 device. It is the targeted general purpose QSPI flash.
Figure 109. General Purpose QSPI Flash in JTAG Chain
- Click on QSPI_512Mb and select Change File.
- Choose the software .pof file, and program it.
Figure 110. Programming Software POF file
- Wait for the software .pof file programming to complete.
- Proceed with the FPGA configuration (JTAG, Active Serial, Passive Serial or AvST) to configure the processor hardware.