F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
ID
683872
Date
1/24/2025
Public
A newer version of this document is available. Customers should click here to go to the newest version.
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
3.12.2. FGT PMA Settings
RX invert P and N: To swap RX P and N serial lanes.
set_instance_assignment -name HSSI_PARAMETER "rx_invert_p_and_n=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "rx_invert_p_and_n=ENABLE" -to rx_serial_data[0] -entity top
RX on-chip termination:
set_instance_assignment -name HSSI_PARAMETER "rx_onchip_termination=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "rx_onchip_termination=RX_ONCHIP_TERMINATION_R_2" -to rx_serial_data[0] -entity top
Possible parameter values are:
- RX_ONCHIP_TERMINATION_R_1 : 85 Ohms.
- RX_ONCHIP_TERMINATION_R_2 : 100 Ohms.
RX AC coupling:
set_instance_assignment -name HSSI_PARAMETER "rx_ac_couple_enable=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "rx_ac_couple_enable=ENABLE" -to rx_serial_data[0] -entity top
Possible parameter values are:
-
ENABLE : when you use on board AC coupling capacitors.
-
DISABLE : when you do not use on board AC coupling capacitors.
TX invert P and N: To swap TX P and N serial lanes.
set_instance_assignment -name HSSI_PARAMETER "tx_invert_p_and_n=<parameter_value>" -to <TX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "tx_invert_p_and_n=ENABLE" -to tx_serial_data[0] -entity top
TX Equalization:
set_instance_assignment -name HSSI_PARAMETER "txeq=<parameter_value>" -to <TX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values:
- main_tap: 0-55
- pre_tap_1: 0-15
- pre_tap_2: 0-7
- post_tap: 0-19
Examples:
set_instance_assignment -name HSSI_PARAMETER "txeq_main_tap=35" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_pre_tap_1=5" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_pre_tap_2=0" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_post_tap_1=0" -to tx_serial_data[0] -entity top
TX PLL Bandwidth:
set_instance_assignment -name HSSI_PARAMETER "tx_pll_bw_sel=<parameter_value>" -to <inst_path>
Valid parameter values:
- tx_pll_bw_sel_low
- tx_pll_bw_sel_medium
- tx_pll_bw_sel_high
To get the instance path, you can follow the steps shown below:
- In the Quartus® Prime Pro Edition software, click Support-Logic Generation.
- Find the instance path using either one of the following two methods:
- In the Quartus® Prime Pro Edition software, open Compilation Report -> Logic Generation Tool -> IP Parameter Settings Report and search for tx_pll_bw_sel. The value of -- BB_F_UX_TX is the instance path.
- Open the <project_name>_tlg.rpt file in the output_files folder and search for -- BB_F_UX_TX.
Example:
set_instance_assignment -name HSSI_PARAMETER "tx_pll_bw_sel=tx_pll_bw_sel_medium" -to dphy|directphy_f_0|dphy_hip_inst|persystem[0].perxcvr[0].fgt.tx_ux.x_bb_f_ux_tx
Manual Tunning:
Bypass RX Auto Adaptation
set_instance_assignment -name HSSI_PARAMETER "flux_mode=FLUX_MODE_BYPASS" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
set_instance_assignment -name HSSI_PARAMETER "flux_mode=FLUX_MODE_BYPASS" -to <TX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
set_instance_assignment -name HSSI_PARAMETER "engineered_link_mode=ENABLE" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
set_instance_assignment -name HSSI_PARAMETER "engineered_link_mode=ENABLE" -to <TX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
set_instance_assignment -name HSSI_PARAMETER "rx_adapt_mode=RX_ADAPT_MODE_STATIC_EQ" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
RX Manual Equalization
- VGA:
set_instance_assignment -name HSSI_PARAMETER "rxeq_vga_gain=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
- High-frequency boost:
set_instance_assignment -name HSSI_PARAMETER "rxeq_hf_boost =<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
- DFE Tap 1:
set_instance_assignment -name HSSI_PARAMETER "rxeq_dfe_data_tap_1=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
VSR Mode for NRZ
- Data Rate >= 23 Gbps and Insertion Loss <= 10 dB:
set_instance_assignment -name HSSI_PARAMETER "vsr_mode=VSR_MODE_LOW_LOSS" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
- Others:
set_instance_assignment -name HSSI_PARAMETER "vsr_mode=VSR_MODE_DISABLE" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
VSR Mode for PAM4, contact Altera customer support.