F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
ID
683872
Date
1/24/2025
Public
A newer version of this document is available. Customers should click here to go to the newest version.
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
2.1.4. FEC Architecture
Each 400G hard IP and 200G hard IP fracture includes FEC. The FEC block is located between the PCS and PMA interface blocks of a fracture.
- Four adjacent st_x1 fractures or two adjacent st_x2 fractures share the same clock and are grouped together as a FEC core.
- st_x4 uses one FEC core.
- Two or four FEC cores are grouped together in st_x8 and st_x16 fractures, respectively.
There is a total of four FEC cores in 400G hard IP and two FEC cores in 200G hard IP. Each FEC core can be used to implement multiple FEC modes as shown in the following table.
FEC Mode | Specification | FEC Compliance Specification | Example Protocols |
---|---|---|---|
RS(272, 258) LL | ETC | ETC RS(272,258) | 50GbE-1, 100GbE-2, 200GbE-4, 400GbE-8 ETC |
RS(528, 514) KR | IEEE | IEEE 802.3 RS(528, 514) (CL 91) | 25GbE-1 |
ETC | IEEE 802.3 RS(528, 514) (CL 91) ETC | 25GbE-1, 50GbE-2 ETC | |
Fibre Channel | Fibre Channel RS(528, 514) | Fibre Channel 16G, 32G, 64G and 128G CPRI 10.1376 Gbps and 24.33024 Gbps |
|
FlexO | FlexO RS(528, 514) | OTU25 100G FlexO |
|
ITU | G.709, G.709.4 RS(528, 514) | OTU25u | |
RS(544, 514) KP | IEEE | IEEE 802.3 RS(544, 514) (CL 134) | 50GbE-1 |
IEEE 802.3 RS(544, 514) (CL 91/CL 161) | 100GbE-1, 100GbE-2 | ||
IEEE 802.3 RS(544 ,514) (CL 119) | 200GbE-4, 400GbE-4, 400GbE-8 | ||
Custom | Custom IEEE 802.3 RS(544, 514) (CL 108) at 26.5625 Gbps NRZ | 25GbE-1 | |
Custom IEEE 802.3 RS(544, 514) (CL 134) at 26.5625 Gbps NRZ | 50GbE-2 | ||
Custom IEEE 802.3 RS(544, 514) (CL 91/CL 161) at 26.5625 Gbps NRZ | 100GbE-4 | ||
Custom IEEE 802.3 RS(544, 514) (CL 119) at 26.5625 Gbps NRZ | 200GbE-8 | ||
Interlaken | Interlaken RS(544, 514) | Interlaken (100G bundles) | |
Fibre Channel | Fibre Channel RS(544, 514) | 16G, 32G, and 128G Fibre Channel | |
FlexO | FlexO RS(544, 514) | 100G FlexO (4x 25G NRZ, 2x 50G PAM4, 1x 100G PAM4) |
Note: The table above has a few examples of the list of protocols supported by F-tile. The list is not an exhaustive list of protocols supported.
If your configuration has multiple interface in one FEC core, you need custom cadence. Refer to Datapath Clock Cadences for details. Refer to FEC Placement Rules for examples.