L-Tile and H-Tile Avalon® Memory-mapped Intel® FPGA IP for PCI Express* User Guide
ID
683667
Date
9/13/2024
Public
1. Introduction
2. Quick Start Guide
3. Interface Overview
4. Parameters
5. Designing with the IP Core
6. Block Descriptions
7. Registers
8. Programming Model for the DMA Descriptor Controller
9. Programming Model for the Avalon® -MM Root Port
10. Avalon-MM Testbench and Design Example
11. Document Revision History
A. PCI Express Core Architecture
B. Root Port Enumeration
C. Troubleshooting and Observing the Link Status
2.1. Design Components
2.2. Hardware and Software Requirements
2.3. Directory Structure
2.4. Generating the Design Example
2.5. Simulating the Design Example
2.6. Compiling the Design Example and Programming the Device
2.7. Installing the Linux Kernel Driver
2.8. Running the Design Example Application
7.1.1. Register Access Definitions
7.1.2. PCI Configuration Header Registers
7.1.3. PCI Express Capability Structures
7.1.4. Intel Defined VSEC Capability Header
7.1.5. Uncorrectable Internal Error Status Register
7.1.6. Uncorrectable Internal Error Mask Register
7.1.7. Correctable Internal Error Status Register
7.1.8. Correctable Internal Error Mask Register
7.2.1.1. Avalon-MM to PCI Express Interrupt Status Registers
7.2.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
7.2.1.3. Address Mapping for High-Performance Avalon-MM 32-Bit Slave Modules
7.2.1.4. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
7.2.1.5. PCI Express Configuration Information Registers
10.5.1. ebfm_barwr Procedure
10.5.2. ebfm_barwr_imm Procedure
10.5.3. ebfm_barrd_wait Procedure
10.5.4. ebfm_barrd_nowt Procedure
10.5.5. ebfm_cfgwr_imm_wait Procedure
10.5.6. ebfm_cfgwr_imm_nowt Procedure
10.5.7. ebfm_cfgrd_wait Procedure
10.5.8. ebfm_cfgrd_nowt Procedure
10.5.9. BFM Configuration Procedures
10.5.10. BFM Shared Memory Access Procedures
10.5.11. BFM Log and Message Procedures
10.5.12. Verilog HDL Formatting Functions
10.4.2. Issuing Read and Write Transactions to the Application Layer
The ebfm_bar procedures in altpcietb_bfm_rdwr.v implement read and write transactions to the Endpoint Application Layer. The procedures and functions listed below are available in the Verilog HDL include file altpcietb_bfm_rdwr.v.
- ebfm_barwr: writes data from BFM shared memory to an offset from a specific Endpoint BAR. This procedure returns as soon as the request has been passed to the VC interface module for transmission.
- ebfm_barwr_imm: writes a maximum of four bytes of immediate data (passed in a procedure call) to an offset from a specific Endpoint BAR. This procedure returns as soon as the request has been passed to the VC interface module for transmission.
- ebfm_barrd_wait: reads data from an offset of a specific Endpoint BAR and stores it in BFM shared memory. This procedure blocks waiting for the completion data to be returned before returning control to the caller.
- ebfm_barrd_nowt: reads data from an offset of a specific Endpoint BAR and stores it in the BFM shared memory. This procedure returns as soon as the request has been passed to the VC interface module for transmission, allowing subsequent reads to be issued in the interim.
These routines take as parameters a BAR number to access the memory space and the BFM shared memory address of the bar_table data structure set up by the ebfm_cfg_rp_ep procedure. (Refer to Configuration of Root Port and Endpoint.) Using these parameters simplifies the BFM test driver routines that access an offset from a specific BAR and eliminates calculating the addresses assigned to the specified BAR.
The Root Port BFM does not support accesses to Endpoint I/O space BARs.