1. Agilex™ 7 FPGA M-Series Clocking and PLL Overview
2. M-Series Clocking and PLL Architecture and Features
3. M-Series Clocking and PLL Design Considerations
4. Clock Control IP Core
5. IOPLL IP Core
6. I/O PLL Reconfiguration
7. Agilex™ 7 Clocking and PLL User Guide: M-Series Archives
8. Document Revision History for the Agilex™ 7 Clocking and PLL User Guide: M-Series
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Locations
2.2.4. PLL Architecture
2.2.5. PLL Control Signals
2.2.6. PLL Feedback Modes
2.2.7. Clock Multiplication and Division
2.2.8. Programmable Phase Shift
2.2.9. Programmable Duty Cycle
2.2.10. PLL Cascading
2.2.11. PLL Input Clock Switchover
2.2.12. PLL Reconfiguration and Dynamic Phase Shift
2.2.13. PLL Calibration
6.1.1. Release Information for EMIF Calibration IP
6.1.2. Setting Up the IOPLL IP
6.1.3. Setting Up the EMIF Calibration IP
6.1.4. Connectivity Between IOPLL FPGA IP and EMIF Calibration IP
6.1.5. Axilite Interface Ports in the EMIF Calibration IP
6.1.6. Reconfiguration Guideline for I/O PLLs
6.1.7. Design Example for I/O PLL Reconfiguration
2.2.6.4. Normal Compensation Mode
An internal clock in normal compensation mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Quartus® Prime Timing Analyzer reports any phase difference between the two. In normal compensation mode, the delay introduced by the clock network is fully compensated. Only one output clock can be compensated in normal compensation mode.
Figure 14. Example of Phase Relationship Between the PLL Clocks in Normal Compensation Mode