1. Agilex™ 7 FPGA M-Series Clocking and PLL Overview
2. M-Series Clocking and PLL Architecture and Features
3. M-Series Clocking and PLL Design Considerations
4. Clock Control IP Core
5. IOPLL IP Core
6. I/O PLL Reconfiguration
7. Agilex™ 7 Clocking and PLL User Guide: M-Series Archives
8. Document Revision History for the Agilex™ 7 Clocking and PLL User Guide: M-Series
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Locations
2.2.4. PLL Architecture
2.2.5. PLL Control Signals
2.2.6. PLL Feedback Modes
2.2.7. Clock Multiplication and Division
2.2.8. Programmable Phase Shift
2.2.9. Programmable Duty Cycle
2.2.10. PLL Cascading
2.2.11. PLL Input Clock Switchover
2.2.12. PLL Reconfiguration and Dynamic Phase Shift
2.2.13. PLL Calibration
6.1.1. Release Information for EMIF Calibration IP
6.1.2. Setting Up the IOPLL IP
6.1.3. Setting Up the EMIF Calibration IP
6.1.4. Connectivity Between IOPLL FPGA IP and EMIF Calibration IP
6.1.5. Axilite Interface Ports in the EMIF Calibration IP
6.1.6. Reconfiguration Guideline for I/O PLLs
6.1.7. Design Example for I/O PLL Reconfiguration
2.2.5.2. Locked
The locked signal port of the IP core for the I/O PLL is locked.
The lock detection circuit provides a signal to the core logic. The signal indicates when the feedback clock locks onto the reference clock both in phase and frequency.
PLL loses lock if the input reference clock stops toggling. When PLL loses lock, the output of the PLL starts drifting out of the desired frequency. The downstream logic must be held inactive when PLL has lost lock.