Notes for Intel® oneAPI Math Kernel Library Vector Statistics
ID
772987
Date
12/04/2020
Public
A newer version of this document is available. Customers should click here to go to the newest version.
3D Spheres Test
Birthday Spacing Test
Bitstream Test
Rank of 31x31 Binary Matrices Test
Rank of 32x32 Binary Matrices Test
Rank of 6x8 Binary Matrices Test
Count-the-1's Test (Stream of Bits)
Count-the-1's Test (Stream of Specific Bytes)
Craps Test
Parking Lot Test
Self-Avoiding Random Walk Test
Template Test
Uniform (VSL_RNG_METHOD_UNIFORM_STD/VSL_RNG_METHOD_UNIFORM_STD_ACCURATE)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_BOXMULLER)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_ICDF)
Exponential (VSL_RNG_METHOD_EXPONENTIAL_ICDF/VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACCURATE)
Laplace (VSL_RNG_METHOD_LAPLACE_ICDF)
Weibull (VSL_RNG_METHOD_WEIBULL_ICDF/ VSL_RNG_METHOD_WEIBULL_ICDF_ACCURATE)
Cauchy (VSL_RNG_METHOD_CAUCHY_ICDF)
Rayleigh (VSL_RNG_METHOD_RAYLEIGH_ICDF/ VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURATE)
Lognormal (VSL_RNG_METHOD_LOGNORMAL_ BOXMULLER2/VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2_ACCURATE)
Lognormal (VSL_RNG_METHOD_LOGNORMAL_ICDF/VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCURATE)
Gumbel (VSL_RNG_METHOD_GUMBEL_ICDF)
Gamma (VSL_RNG_METHOD_GAMMA_GNORM/ VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE)
Beta (VSL_RNG_METHOD_BETA_CJA/ VSL_RNG_METHOD_BETA_CJA_ACCURATE)
ChiSquare (VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA)
Uniform (VSL_RNG_METHOD_UNIFORM_STD)
UniformBits (VSL_RNG_METHOD_UNIFORMBITS_STD)
UniformBits32 (VSL_RNG_METHOD_UNIFORMBITS32_STD)
UniformBits64 (VSL_RNG_METHOD_UNIFORMBITS64_STD)
Bernoulli (VSL_RNG_METHOD_BERNOULLI_ICDF)
Geometric (VSL_RNG_METHOD_GEOMETRIC_ICDF)
Binomial (VSL_RNG_METHOD_BINOMIAL_BTPE)
Hypergeometric (VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE)
Poisson (VSL_RNG_METHOD_POISSON_PTPE)
Poisson (VSL_RNG_METHOD_POISSON_POISNORM)
PoissonV (VSL_RNG_METHOD_POISSONV_POISNORM)
NegBinomial (VSL_RNG_METHOD_NEGBINOMIAL_NBAR)
Multinomial (VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON)
ChiSquare (VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA)
Random number generator of the chi-square distribution with degrees of freedom v. You can generate any successful random number x of the chi-square distribution as follows:
- If v = 1 and v = 3, a chi-square distributed number is generated as a sum of squares of v independent normal random numbers with parameter mean value a = 0 and standard deviation σ = 1.
- If v is even and 2 ≤ v ≤ 16, a chi-square distributed random number is generated according to the formula:
, where ui is a vector of successive random numbers uniformly distributed over the interval (0, 1). - If v ≥ 17 or v is odd and 5 ≤ v ≤ 15, the ChiSquare distribution is reduced to Gamma distribution with parameters shape α = v/2, offset a = 0, and scalefactor β = 2. Random numbers of the Gamma distribution are generated using method VSL_RNG_METHOD_GAMMA_GNORM.
See Intel® oneAPI Math Kernel Library Vector Statistics Random Number Generator Performance Data for test results summary and performance graphs.
Parent topic: Continuous Distribution Random Number Generators