Visible to Intel only — GUID: GUID-4DD643E9-B336-406C-94E9-D2AB71F7E8FB
Visible to Intel only — GUID: GUID-4DD643E9-B336-406C-94E9-D2AB71F7E8FB
?la_porcond_c
Computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.
call cla_porcond_c( uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork )
call zla_porcond_c( uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork )
- mkl.fi
The function computes the infinity norm condition number of
op(A) * inv(diag(c))
where the c is a REAL vector for cla_porcond_c and a DOUBLE PRECISION vector for zla_porcond_c.
- uplo
-
CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
- n
-
INTEGER. The number of linear equations, that is, the order of the matrix A; n≥ 0.
- a
-
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION(lda, *). On entry, the n-by-n matrix A. The second dimension of a must be at least max(1,n).
- lda
-
INTEGER. The leading dimension of the array a. lda≥max(1,n).
- af
-
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION(ldaf, *). The triangular factor L or U from the Cholesky factorization
A = UH*U or A = L*LH,
as computed by ?potrf.
The second dimension of af must be at least max(1,n).
- ldaf
-
INTEGER. The leading dimension of the array af. ldaf≥max(1,n).
- c
-
REAL for cla_porcond_c
DOUBLE PRECISION for zla_porcond_c
Array c with DIMENSIONn. The vector c in the formula
op(A) * inv(diag(c)).
- capply
-
LOGICAL. If .TRUE., then the function uses the vector c from the formula
op(A) * inv(diag(c)).
- work
-
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array DIMENSION 2*n. Workspace.
- rwork
-
REAL for cla_porcond_c
DOUBLE PRECISION for zla_porcond_c
Array DIMENSIONn. Workspace.
- info
-
INTEGER.
If info = 0, the execution is successful.
If i > 0, the i-th parameter is invalid.