Intel® oneAPI Deep Neural Network Developer Guide and Reference
A newer version of this document is available. Customers should click here to go to the newest version.
Reduction
Overview
A primitive to compute reduction operation on data tensor using min, max, mul, sum, mean and norm_lp operations. More…
// structs
struct dnnl::reduction;
// global functions
dnnl_status_t DNNL_API dnnl_reduction_primitive_desc_create(
    dnnl_primitive_desc_t* primitive_desc,
    dnnl_engine_t engine,
    dnnl_alg_kind_t alg_kind,
    const_dnnl_memory_desc_t src_desc,
    const_dnnl_memory_desc_t dst_desc,
    float p,
    float eps,
    const_dnnl_primitive_attr_t attr
    );Detailed Documentation
A primitive to compute reduction operation on data tensor using min, max, mul, sum, mean and norm_lp operations.
See also:
Reduction in developer guide
Global Functions
dnnl_status_t DNNL_API dnnl_reduction_primitive_desc_create(
    dnnl_primitive_desc_t* primitive_desc,
    dnnl_engine_t engine,
    dnnl_alg_kind_t alg_kind,
    const_dnnl_memory_desc_t src_desc,
    const_dnnl_memory_desc_t dst_desc,
    float p,
    float eps,
    const_dnnl_primitive_attr_t attr
    )Creates a primitive descriptor for a reduction primitive.
Parameters:
| primitive_desc | Output primitive descriptor. | 
| engine | Engine to use. | 
| alg_kind | reduction algorithm kind. Possible values: dnnl_reduction_max, dnnl_reduction_min, dnnl_reduction_sum, dnnl_reduction_mul, dnnl_reduction_mean, dnnl_reduction_norm_lp_max, dnnl_reduction_norm_lp_sum, dnnl_reduction_norm_lp_power_p_max, dnnl_reduction_norm_lp_power_p_sum. | 
| p | Algorithm specific parameter. | 
| eps | Algorithm specific parameter. | 
| src_desc | Source memory descriptor. | 
| dst_desc | Destination memory descriptor. | 
| attr | Primitive attributes (can be NULL). | 
Returns:
dnnl_success on success and a status describing the error otherwise.