Intel® oneAPI Deep Neural Network Developer Guide and Reference
A newer version of this document is available. Customers should click here to go to the newest version.
enum dnnl_alg_kind_t
Overview
Kinds of algorithms. More…
#include <dnnl_types.h>
enum dnnl_alg_kind_t
{
    dnnl_alg_kind_undef,
    dnnl_convolution_direct               = 0x1,
    dnnl_convolution_winograd             = 0x2,
    dnnl_convolution_auto                 = 0x3,
    dnnl_deconvolution_direct             = 0xa,
    dnnl_deconvolution_winograd           = 0xb,
    dnnl_eltwise_relu                     = 0x20,
    dnnl_eltwise_tanh,
    dnnl_eltwise_elu,
    dnnl_eltwise_square,
    dnnl_eltwise_abs,
    dnnl_eltwise_sqrt,
    dnnl_eltwise_linear,
    dnnl_eltwise_soft_relu,
    dnnl_eltwise_hardsigmoid,
    dnnl_eltwise_logistic,
    dnnl_eltwise_exp,
    dnnl_eltwise_gelu_tanh,
    dnnl_eltwise_swish,
    dnnl_eltwise_log,
    dnnl_eltwise_clip,
    dnnl_eltwise_clip_v2,
    dnnl_eltwise_pow,
    dnnl_eltwise_gelu_erf,
    dnnl_eltwise_round,
    dnnl_eltwise_mish,
    dnnl_eltwise_hardswish,
    dnnl_eltwise_relu_use_dst_for_bwd     = 0x100,
    dnnl_eltwise_tanh_use_dst_for_bwd,
    dnnl_eltwise_elu_use_dst_for_bwd,
    dnnl_eltwise_sqrt_use_dst_for_bwd,
    dnnl_eltwise_logistic_use_dst_for_bwd,
    dnnl_eltwise_exp_use_dst_for_bwd,
    dnnl_eltwise_clip_v2_use_dst_for_bwd,
    dnnl_pooling_max                      = 0x1ff,
    dnnl_pooling_avg_include_padding      = 0x2ff,
    dnnl_pooling_avg_exclude_padding      = 0x3ff,
    dnnl_lrn_across_channels              = 0xaff,
    dnnl_lrn_within_channel               = 0xbff,
    dnnl_vanilla_rnn                      = 0x1fff,
    dnnl_vanilla_lstm                     = 0x2fff,
    dnnl_vanilla_gru                      = 0x3fff,
    dnnl_lbr_gru                          = 0x4fff,
    dnnl_vanilla_augru                    = 0x5fff,
    dnnl_lbr_augru                        = 0x6fff,
    dnnl_binary_add                       = 0x1fff0,
    dnnl_binary_mul                       = 0x1fff1,
    dnnl_binary_max                       = 0x1fff2,
    dnnl_binary_min                       = 0x1fff3,
    dnnl_binary_div                       = 0x1fff4,
    dnnl_binary_sub                       = 0x1fff5,
    dnnl_binary_ge                        = 0x1fff6,
    dnnl_binary_gt                        = 0x1fff7,
    dnnl_binary_le                        = 0x1fff8,
    dnnl_binary_lt                        = 0x1fff9,
    dnnl_binary_eq                        = 0x1fffa,
    dnnl_binary_ne                        = 0x1fffb,
    dnnl_resampling_nearest               = 0x2fff0,
    dnnl_resampling_linear                = 0x2fff1,
    dnnl_reduction_max,
    dnnl_reduction_min,
    dnnl_reduction_sum,
    dnnl_reduction_mul,
    dnnl_reduction_mean,
    dnnl_reduction_norm_lp_max,
    dnnl_reduction_norm_lp_sum,
    dnnl_reduction_norm_lp_power_p_max,
    dnnl_reduction_norm_lp_power_p_sum,
    dnnl_softmax_accurate                 = 0x30000,
    dnnl_softmax_log,
};Detailed Documentation
Kinds of algorithms.
Enum Values
dnnl_convolution_directDirect convolution.
dnnl_convolution_winogradWinograd convolution.
dnnl_convolution_autoConvolution algorithm(either direct or Winograd) is chosen just in time.
dnnl_deconvolution_directDirect deconvolution.
dnnl_deconvolution_winogradWinograd deconvolution.
dnnl_eltwise_reluEltwise: ReLU.
dnnl_eltwise_tanhEltwise: hyperbolic tangent non-linearity (tanh)
dnnl_eltwise_eluEltwise: exponential linear unit (elu)
dnnl_eltwise_squareEltwise: square.
dnnl_eltwise_absEltwise: abs.
dnnl_eltwise_sqrtEltwise: square root.
dnnl_eltwise_linearEltwise: linear.
dnnl_eltwise_soft_reluEltwise: soft_relu.
dnnl_eltwise_hardsigmoidEltwise: hardsigmoid.
dnnl_eltwise_logisticEltwise: logistic.
dnnl_eltwise_expEltwise: exponent.
dnnl_eltwise_gelu_tanhEltwise: gelu.
dnnl_eltwise_swishEltwise: swish.
dnnl_eltwise_logEltwise: natural logarithm.
dnnl_eltwise_clipEltwise: clip.
dnnl_eltwise_clip_v2Eltwise: clip version 2.
dnnl_eltwise_powEltwise: pow.
dnnl_eltwise_gelu_erfEltwise: erf-based gelu.
dnnl_eltwise_roundEltwise: round.
dnnl_eltwise_mishEltwise: mish.
dnnl_eltwise_hardswishEltwise: hardswish.
dnnl_eltwise_relu_use_dst_for_bwdEltwise: ReLU (dst for backward)
dnnl_eltwise_tanh_use_dst_for_bwdEltwise: hyperbolic tangent non-linearity (tanh) (dst for backward)
dnnl_eltwise_elu_use_dst_for_bwdEltwise: exponential linear unit (elu) (dst for backward)
dnnl_eltwise_sqrt_use_dst_for_bwdEltwise: square root (dst for backward)
dnnl_eltwise_logistic_use_dst_for_bwdEltwise: logistic (dst for backward)
dnnl_eltwise_exp_use_dst_for_bwdEltwise: exp (dst for backward)
dnnl_eltwise_clip_v2_use_dst_for_bwdEltwise: clip version 2 (dst for backward)
dnnl_pooling_maxMax pooling.
dnnl_pooling_avg_include_paddingAverage pooling include padding.
dnnl_pooling_avg_exclude_paddingAverage pooling exclude padding.
dnnl_lrn_across_channelsLocal response normalization (LRN) across multiple channels.
dnnl_lrn_within_channelLRN within a single channel.
dnnl_vanilla_rnnRNN cell.
dnnl_vanilla_lstmLSTM cell.
dnnl_vanilla_gruGRU cell.
dnnl_lbr_gruGRU cell with linear before reset.
Modification of original GRU cell. Differs from dnnl_vanilla_gru in how the new memory gate is calculated:
 
 
   Primitive expects 4 biases on input: 
dnnl_vanilla_augruAUGRU cell.
dnnl_lbr_augruAUGRU cell with linear before reset.
dnnl_binary_addBinary add.
dnnl_binary_mulBinary mul.
dnnl_binary_maxBinary max.
dnnl_binary_minBinary min.
dnnl_binary_divBinary div.
dnnl_binary_subBinary sub.
dnnl_binary_geBinary greater or equal.
dnnl_binary_gtBinary greater than.
dnnl_binary_leBinary less or equal.
dnnl_binary_ltBinary less than.
dnnl_binary_eqBinary equal.
dnnl_binary_neBinary not equal.
dnnl_resampling_nearestNearest Neighbor Resampling Method.
dnnl_resampling_linearLinear Resampling Method.
dnnl_reduction_maxReduction using max.
dnnl_reduction_minReduction using min.
dnnl_reduction_sumReduction using sum.
dnnl_reduction_mulReduction using mul.
dnnl_reduction_meanReduction using mean.
dnnl_reduction_norm_lp_maxReduction using lp norm.
dnnl_reduction_norm_lp_sumReduction using lp norm.
dnnl_reduction_norm_lp_power_p_maxReduction using lp norm without final pth-root.
dnnl_reduction_norm_lp_power_p_sumReduction using lp norm without final pth-root.
dnnl_softmax_accurateSoftmax.
dnnl_softmax_logLogsoftmax.