Intel® oneAPI Deep Neural Network Developer Guide and Reference
                    
                        ID
                        768875
                    
                
                
                    Date
                    2/28/2024
                
                
                    Public
                
            A newer version of this document is available. Customers should click here to go to the newest version.
                                                
                                                
                                                    
                                                    
                                                        Abs
                                                    
                                                    
                                                
                                                    
                                                    
                                                        AbsBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Add
                                                    
                                                    
                                                
                                                    
                                                    
                                                        AvgPool
                                                    
                                                    
                                                
                                                    
                                                    
                                                        AvgPoolBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        BatchNormForwardTraining
                                                    
                                                    
                                                
                                                    
                                                    
                                                        BatchNormInference
                                                    
                                                    
                                                
                                                    
                                                    
                                                        BatchNormTrainingBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        BiasAdd
                                                    
                                                    
                                                
                                                    
                                                    
                                                        BiasAddBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Clamp
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ClampBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Concat
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Convolution
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ConvolutionBackwardData
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ConvolutionBackwardWeights
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ConvTranspose
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ConvTransposeBackwardData
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ConvTransposeBackwardWeights
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Dequantize
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Divide
                                                    
                                                    
                                                
                                                    
                                                    
                                                        DynamicDequantize
                                                    
                                                    
                                                
                                                    
                                                    
                                                        DynamicQuantize
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Elu
                                                    
                                                    
                                                
                                                    
                                                    
                                                        EluBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        End
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Exp
                                                    
                                                    
                                                
                                                    
                                                    
                                                        GELU
                                                    
                                                    
                                                
                                                    
                                                    
                                                        GELUBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        HardSigmoid
                                                    
                                                    
                                                
                                                    
                                                    
                                                        HardSigmoidBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        HardSwish
                                                    
                                                    
                                                
                                                    
                                                    
                                                        HardSwishBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Interpolate
                                                    
                                                    
                                                
                                                    
                                                    
                                                        InterpolateBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        LayerNorm
                                                    
                                                    
                                                
                                                    
                                                    
                                                        LayerNormBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        LeakyReLU
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Log
                                                    
                                                    
                                                
                                                    
                                                    
                                                        LogSoftmax
                                                    
                                                    
                                                
                                                    
                                                    
                                                        LogSoftmaxBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        MatMul
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Maximum
                                                    
                                                    
                                                
                                                    
                                                    
                                                        MaxPool
                                                    
                                                    
                                                
                                                    
                                                    
                                                        MaxPoolBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Minimum
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Mish
                                                    
                                                    
                                                
                                                    
                                                    
                                                        MishBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Multiply
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Pow
                                                    
                                                    
                                                
                                                    
                                                    
                                                        PReLU
                                                    
                                                    
                                                
                                                    
                                                    
                                                        PReLUBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Quantize
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Reciprocal
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceL1
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceL2
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceMax
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceMean
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceMin
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceProd
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReduceSum
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReLU
                                                    
                                                    
                                                
                                                    
                                                    
                                                        ReLUBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Reorder
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Round
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Select
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Sigmoid
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SigmoidBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SoftMax
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SoftMaxBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SoftPlus
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SoftPlusBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Sqrt
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SqrtBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Square
                                                    
                                                    
                                                
                                                    
                                                    
                                                        SquaredDifference
                                                    
                                                    
                                                
                                                    
                                                    
                                                        StaticReshape
                                                    
                                                    
                                                
                                                    
                                                    
                                                        StaticTranspose
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Subtract
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Tanh
                                                    
                                                    
                                                
                                                    
                                                    
                                                        TanhBackward
                                                    
                                                    
                                                
                                                    
                                                    
                                                        TypeCast
                                                    
                                                    
                                                
                                                    
                                                    
                                                        Wildcard
                                                    
                                                    
                                                
                                            
                                        
                                                            
                                                            
                                                                
                                                                
                                                                    enum dnnl_alg_kind_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl_normalization_flags_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl_primitive_kind_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl_prop_kind_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl_query_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl::normalization_flags
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl::query
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl_exec_arg_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl_primitive
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl_primitive_desc
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::primitive
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl::primitive_desc
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl::primitive_desc_base
                                                                
                                                                
                                                            
                                                        
                                                    
                                                            
                                                            
                                                                
                                                                
                                                                    enum dnnl_rnn_direction_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl_rnn_flags_t
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl::rnn_direction
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    enum dnnl::rnn_flags
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::augru_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::augru_forward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::gru_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::gru_forward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lbr_augru_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lbr_augru_forward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lbr_gru_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lbr_gru_forward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lstm_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::lstm_forward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                
                                                                    struct dnnl::rnn_primitive_desc_base
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::vanilla_rnn_backward
                                                                
                                                                
                                                                
                                                            
                                                                
                                                                    struct dnnl::vanilla_rnn_forward
                                                                
                                                                
                                                                
                                                            
                                                        
                                                    cnn_inference_f32 cpp
This C++ API example demonstrates how to build an AlexNet neural network topology for forward-pass inference. Annotated version: CNN f32 inference example
This C++ API example demonstrates how to build an AlexNet neural network topology for forward-pass inference. Annotated version: CNN f32 inference example
/*******************************************************************************
* Copyright 2016-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <chrono>
#include <vector>
#include <unordered_map>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
void simple_net(engine::kind engine_kind, int times = 100) {
    using tag = memory::format_tag;
    using dt = memory::data_type;
    //[Initialize engine and stream]
    engine eng(engine_kind, 0);
    stream s(eng);
    //[Initialize engine and stream]
    //[Create network]
    std::vector<primitive> net;
    std::vector<std::unordered_map<int, memory>> net_args;
    //[Create network]
    const memory::dim batch = 1;
    // AlexNet: conv1
    // {batch, 3, 227, 227} (x) {96, 3, 11, 11} -> {batch, 96, 55, 55}
    // strides: {4, 4}
    memory::dims conv1_src_tz = {batch, 3, 227, 227};
    memory::dims conv1_weights_tz = {96, 3, 11, 11};
    memory::dims conv1_bias_tz = {96};
    memory::dims conv1_dst_tz = {batch, 96, 55, 55};
    memory::dims conv1_strides = {4, 4};
    memory::dims conv1_padding = {0, 0};
    //[Allocate buffers]
    std::vector<float> user_src(batch * 3 * 227 * 227);
    std::vector<float> user_dst(batch * 1000);
    std::vector<float> conv1_weights(product(conv1_weights_tz));
    std::vector<float> conv1_bias(product(conv1_bias_tz));
    //[Allocate buffers]
    //[Create user memory]
    auto user_src_memory = memory({{conv1_src_tz}, dt::f32, tag::nchw}, eng);
    write_to_dnnl_memory(user_src.data(), user_src_memory);
    auto user_weights_memory
            = memory({{conv1_weights_tz}, dt::f32, tag::oihw}, eng);
    write_to_dnnl_memory(conv1_weights.data(), user_weights_memory);
    auto conv1_user_bias_memory
            = memory({{conv1_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(conv1_bias.data(), conv1_user_bias_memory);
    //[Create user memory]
    //[Create convolution memory descriptors]
    auto conv1_src_md = memory::desc({conv1_src_tz}, dt::f32, tag::any);
    auto conv1_bias_md = memory::desc({conv1_bias_tz}, dt::f32, tag::any);
    auto conv1_weights_md = memory::desc({conv1_weights_tz}, dt::f32, tag::any);
    auto conv1_dst_md = memory::desc({conv1_dst_tz}, dt::f32, tag::any);
    //[Create convolution memory descriptors]
    //[Create convolution primitive descriptor]
    auto conv1_prim_desc = convolution_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::convolution_direct,
            conv1_src_md, conv1_weights_md, conv1_bias_md, conv1_dst_md,
            conv1_strides, conv1_padding, conv1_padding);
    //[Create convolution primitive descriptor]
    //[Reorder data and weights]
    auto conv1_src_memory = user_src_memory;
    if (conv1_prim_desc.src_desc() != user_src_memory.get_desc()) {
        conv1_src_memory = memory(conv1_prim_desc.src_desc(), eng);
        net.push_back(reorder(user_src_memory, conv1_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, user_src_memory},
                {DNNL_ARG_TO, conv1_src_memory}});
    }
    auto conv1_weights_memory = user_weights_memory;
    if (conv1_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
        conv1_weights_memory = memory(conv1_prim_desc.weights_desc(), eng);
        reorder(user_weights_memory, conv1_weights_memory)
                .execute(s, user_weights_memory, conv1_weights_memory);
    }
    //[Reorder data and weights]
    //[Create memory for output]
    auto conv1_dst_memory = memory(conv1_prim_desc.dst_desc(), eng);
    //[Create memory for output]
    //[Create convolution primitive]
    net.push_back(convolution_forward(conv1_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv1_src_memory},
            {DNNL_ARG_WEIGHTS, conv1_weights_memory},
            {DNNL_ARG_BIAS, conv1_user_bias_memory},
            {DNNL_ARG_DST, conv1_dst_memory}});
    //[Create convolution primitive]
    // AlexNet: relu1
    // {batch, 96, 55, 55} -> {batch, 96, 55, 55}
    const float negative1_slope = 0.0f;
    //[Create relu primitive]
    auto relu1_prim_desc
            = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::eltwise_relu, conv1_dst_memory.get_desc(),
                    conv1_dst_memory.get_desc(), negative1_slope);
    net.push_back(eltwise_forward(relu1_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv1_dst_memory},
            {DNNL_ARG_DST, conv1_dst_memory}});
    //[Create relu primitive]
    // AlexNet: lrn1
    // {batch, 96, 55, 55} -> {batch, 96, 55, 55}
    // local size: 5
    // alpha1: 0.0001
    // beta1: 0.75
    const memory::dim local1_size = 5;
    const float alpha1 = 0.0001f;
    const float beta1 = 0.75f;
    const float k1 = 1.0f;
    // create lrn primitive and add it to net
    auto lrn1_prim_desc = lrn_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::lrn_across_channels,
            conv1_dst_memory.get_desc(), conv1_dst_memory.get_desc(),
            local1_size, alpha1, beta1, k1);
    auto lrn1_dst_memory = memory(lrn1_prim_desc.dst_desc(), eng);
    net.push_back(lrn_forward(lrn1_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv1_dst_memory},
            {DNNL_ARG_DST, lrn1_dst_memory}});
    // AlexNet: pool1
    // {batch, 96, 55, 55} -> {batch, 96, 27, 27}
    // kernel: {3, 3}
    // strides: {2, 2}
    memory::dims pool1_dst_tz = {batch, 96, 27, 27};
    memory::dims pool1_kernel = {3, 3};
    memory::dims pool1_strides = {2, 2};
    memory::dims pool_dilation = {0, 0};
    memory::dims pool_padding = {0, 0};
    auto pool1_dst_md = memory::desc({pool1_dst_tz}, dt::f32, tag::any);
    //[Create pooling primitive]
    auto pool1_pd = pooling_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::pooling_max,
            lrn1_dst_memory.get_desc(), pool1_dst_md, pool1_strides,
            pool1_kernel, pool_dilation, pool_padding, pool_padding);
    auto pool1_dst_memory = memory(pool1_pd.dst_desc(), eng);
    net.push_back(pooling_forward(pool1_pd));
    net_args.push_back({{DNNL_ARG_SRC, lrn1_dst_memory},
            {DNNL_ARG_DST, pool1_dst_memory}});
    //[Create pooling primitive]
    // AlexNet: conv2
    // {batch, 96, 27, 27} (x) {2, 128, 48, 5, 5} -> {batch, 256, 27, 27}
    // strides: {1, 1}
    memory::dims conv2_src_tz = {batch, 96, 27, 27};
    memory::dims conv2_weights_tz = {2, 128, 48, 5, 5};
    memory::dims conv2_bias_tz = {256};
    memory::dims conv2_dst_tz = {batch, 256, 27, 27};
    memory::dims conv2_strides = {1, 1};
    memory::dims conv2_padding = {2, 2};
    std::vector<float> conv2_weights(product(conv2_weights_tz));
    std::vector<float> conv2_bias(product(conv2_bias_tz));
    // create memory for user data
    auto conv2_user_weights_memory
            = memory({{conv2_weights_tz}, dt::f32, tag::goihw}, eng);
    write_to_dnnl_memory(conv2_weights.data(), conv2_user_weights_memory);
    auto conv2_user_bias_memory
            = memory({{conv2_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(conv2_bias.data(), conv2_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto conv2_src_md = memory::desc({conv2_src_tz}, dt::f32, tag::any);
    auto conv2_bias_md = memory::desc({conv2_bias_tz}, dt::f32, tag::any);
    auto conv2_weights_md = memory::desc({conv2_weights_tz}, dt::f32, tag::any);
    auto conv2_dst_md = memory::desc({conv2_dst_tz}, dt::f32, tag::any);
    // create a convolution
    auto conv2_prim_desc = convolution_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::convolution_direct,
            conv2_src_md, conv2_weights_md, conv2_bias_md, conv2_dst_md,
            conv2_strides, conv2_padding, conv2_padding);
    auto conv2_src_memory = pool1_dst_memory;
    if (conv2_prim_desc.src_desc() != conv2_src_memory.get_desc()) {
        conv2_src_memory = memory(conv2_prim_desc.src_desc(), eng);
        net.push_back(reorder(pool1_dst_memory, conv2_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, pool1_dst_memory},
                {DNNL_ARG_TO, conv2_src_memory}});
    }
    auto conv2_weights_memory = conv2_user_weights_memory;
    if (conv2_prim_desc.weights_desc()
            != conv2_user_weights_memory.get_desc()) {
        conv2_weights_memory = memory(conv2_prim_desc.weights_desc(), eng);
        reorder(conv2_user_weights_memory, conv2_weights_memory)
                .execute(s, conv2_user_weights_memory, conv2_weights_memory);
    }
    auto conv2_dst_memory = memory(conv2_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(convolution_forward(conv2_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv2_src_memory},
            {DNNL_ARG_WEIGHTS, conv2_weights_memory},
            {DNNL_ARG_BIAS, conv2_user_bias_memory},
            {DNNL_ARG_DST, conv2_dst_memory}});
    // AlexNet: relu2
    // {batch, 256, 27, 27} -> {batch, 256, 27, 27}
    const float negative2_slope = 0.0f;
    // create relu primitive and add it to net
    auto relu2_prim_desc
            = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::eltwise_relu, conv2_dst_memory.get_desc(),
                    conv2_dst_memory.get_desc(), negative2_slope);
    net.push_back(eltwise_forward(relu2_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv2_dst_memory},
            {DNNL_ARG_DST, conv2_dst_memory}});
    // AlexNet: lrn2
    // {batch, 256, 27, 27} -> {batch, 256, 27, 27}
    // local size: 5
    // alpha2: 0.0001
    // beta2: 0.75
    const memory::dim local2_size = 5;
    const float alpha2 = 0.0001f;
    const float beta2 = 0.75f;
    const float k2 = 1.0f;
    // create lrn primitive and add it to net
    auto lrn2_prim_desc
            = lrn_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::lrn_across_channels, conv2_prim_desc.dst_desc(),
                    conv2_prim_desc.dst_desc(), local2_size, alpha2, beta2, k2);
    auto lrn2_dst_memory = memory(lrn2_prim_desc.dst_desc(), eng);
    net.push_back(lrn_forward(lrn2_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv2_dst_memory},
            {DNNL_ARG_DST, lrn2_dst_memory}});
    // AlexNet: pool2
    // {batch, 256, 27, 27} -> {batch, 256, 13, 13}
    // kernel: {3, 3}
    // strides: {2, 2}
    memory::dims pool2_dst_tz = {batch, 256, 13, 13};
    memory::dims pool2_kernel = {3, 3};
    memory::dims pool2_strides = {2, 2};
    memory::dims pool2_dilation = {0, 0};
    memory::dims pool2_padding = {0, 0};
    auto pool2_dst_md = memory::desc({pool2_dst_tz}, dt::f32, tag::any);
    // create a pooling
    auto pool2_pd = pooling_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::pooling_max,
            lrn2_dst_memory.get_desc(), pool2_dst_md, pool2_strides,
            pool2_kernel, pool2_dilation, pool2_padding, pool2_padding);
    auto pool2_dst_memory = memory(pool2_pd.dst_desc(), eng);
    // create pooling primitive an add it to net
    net.push_back(pooling_forward(pool2_pd));
    net_args.push_back({{DNNL_ARG_SRC, lrn2_dst_memory},
            {DNNL_ARG_DST, pool2_dst_memory}});
    // AlexNet: conv3
    // {batch, 256, 13, 13} (x)  {384, 256, 3, 3}; -> {batch, 384, 13, 13};
    // strides: {1, 1}
    memory::dims conv3_src_tz = {batch, 256, 13, 13};
    memory::dims conv3_weights_tz = {384, 256, 3, 3};
    memory::dims conv3_bias_tz = {384};
    memory::dims conv3_dst_tz = {batch, 384, 13, 13};
    memory::dims conv3_strides = {1, 1};
    memory::dims conv3_padding = {1, 1};
    std::vector<float> conv3_weights(product(conv3_weights_tz));
    std::vector<float> conv3_bias(product(conv3_bias_tz));
    // create memory for user data
    auto conv3_user_weights_memory
            = memory({{conv3_weights_tz}, dt::f32, tag::oihw}, eng);
    write_to_dnnl_memory(conv3_weights.data(), conv3_user_weights_memory);
    auto conv3_user_bias_memory
            = memory({{conv3_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(conv3_bias.data(), conv3_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto conv3_src_md = memory::desc({conv3_src_tz}, dt::f32, tag::any);
    auto conv3_bias_md = memory::desc({conv3_bias_tz}, dt::f32, tag::any);
    auto conv3_weights_md = memory::desc({conv3_weights_tz}, dt::f32, tag::any);
    auto conv3_dst_md = memory::desc({conv3_dst_tz}, dt::f32, tag::any);
    // create a convolution
    auto conv3_prim_desc = convolution_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::convolution_direct,
            conv3_src_md, conv3_weights_md, conv3_bias_md, conv3_dst_md,
            conv3_strides, conv3_padding, conv3_padding);
    auto conv3_src_memory = pool2_dst_memory;
    if (conv3_prim_desc.src_desc() != conv3_src_memory.get_desc()) {
        conv3_src_memory = memory(conv3_prim_desc.src_desc(), eng);
        net.push_back(reorder(pool2_dst_memory, conv3_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, pool2_dst_memory},
                {DNNL_ARG_TO, conv3_src_memory}});
    }
    auto conv3_weights_memory = conv3_user_weights_memory;
    if (conv3_prim_desc.weights_desc()
            != conv3_user_weights_memory.get_desc()) {
        conv3_weights_memory = memory(conv3_prim_desc.weights_desc(), eng);
        reorder(conv3_user_weights_memory, conv3_weights_memory)
                .execute(s, conv3_user_weights_memory, conv3_weights_memory);
    }
    auto conv3_dst_memory = memory(conv3_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(convolution_forward(conv3_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv3_src_memory},
            {DNNL_ARG_WEIGHTS, conv3_weights_memory},
            {DNNL_ARG_BIAS, conv3_user_bias_memory},
            {DNNL_ARG_DST, conv3_dst_memory}});
    // AlexNet: relu3
    // {batch, 384, 13, 13} -> {batch, 384, 13, 13}
    const float negative3_slope = 0.0f;
    // create relu primitive and add it to net
    auto relu3_prim_desc
            = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::eltwise_relu, conv3_dst_memory.get_desc(),
                    conv3_dst_memory.get_desc(), negative3_slope);
    net.push_back(eltwise_forward(relu3_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv3_dst_memory},
            {DNNL_ARG_DST, conv3_dst_memory}});
    // AlexNet: conv4
    // {batch, 384, 13, 13} (x)  {2, 192, 192, 3, 3}; ->
    // {batch, 384, 13, 13};
    // strides: {1, 1}
    memory::dims conv4_src_tz = {batch, 384, 13, 13};
    memory::dims conv4_weights_tz = {2, 192, 192, 3, 3};
    memory::dims conv4_bias_tz = {384};
    memory::dims conv4_dst_tz = {batch, 384, 13, 13};
    memory::dims conv4_strides = {1, 1};
    memory::dims conv4_padding = {1, 1};
    std::vector<float> conv4_weights(product(conv4_weights_tz));
    std::vector<float> conv4_bias(product(conv4_bias_tz));
    // create memory for user data
    auto conv4_user_weights_memory
            = memory({{conv4_weights_tz}, dt::f32, tag::goihw}, eng);
    write_to_dnnl_memory(conv4_weights.data(), conv4_user_weights_memory);
    auto conv4_user_bias_memory
            = memory({{conv4_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(conv4_bias.data(), conv4_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto conv4_src_md = memory::desc({conv4_src_tz}, dt::f32, tag::any);
    auto conv4_bias_md = memory::desc({conv4_bias_tz}, dt::f32, tag::any);
    auto conv4_weights_md = memory::desc({conv4_weights_tz}, dt::f32, tag::any);
    auto conv4_dst_md = memory::desc({conv4_dst_tz}, dt::f32, tag::any);
    // create a convolution
    auto conv4_prim_desc = convolution_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::convolution_direct,
            conv4_src_md, conv4_weights_md, conv4_bias_md, conv4_dst_md,
            conv4_strides, conv4_padding, conv4_padding);
    auto conv4_src_memory = conv3_dst_memory;
    if (conv4_prim_desc.src_desc() != conv4_src_memory.get_desc()) {
        conv4_src_memory = memory(conv4_prim_desc.src_desc(), eng);
        net.push_back(reorder(conv3_dst_memory, conv4_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, conv3_dst_memory},
                {DNNL_ARG_TO, conv4_src_memory}});
    }
    auto conv4_weights_memory = conv4_user_weights_memory;
    if (conv4_prim_desc.weights_desc()
            != conv4_user_weights_memory.get_desc()) {
        conv4_weights_memory = memory(conv4_prim_desc.weights_desc(), eng);
        reorder(conv4_user_weights_memory, conv4_weights_memory)
                .execute(s, conv4_user_weights_memory, conv4_weights_memory);
    }
    auto conv4_dst_memory = memory(conv4_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(convolution_forward(conv4_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv4_src_memory},
            {DNNL_ARG_WEIGHTS, conv4_weights_memory},
            {DNNL_ARG_BIAS, conv4_user_bias_memory},
            {DNNL_ARG_DST, conv4_dst_memory}});
    // AlexNet: relu4
    // {batch, 384, 13, 13} -> {batch, 384, 13, 13}
    const float negative4_slope = 0.0f;
    // create relu primitive and add it to net
    auto relu4_prim_desc
            = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::eltwise_relu, conv4_dst_memory.get_desc(),
                    conv4_dst_memory.get_desc(), negative4_slope);
    net.push_back(eltwise_forward(relu4_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv4_dst_memory},
            {DNNL_ARG_DST, conv4_dst_memory}});
    // AlexNet: conv5
    // {batch, 384, 13, 13} (x)  {2, 128, 192, 3, 3}; -> {batch, 256, 13, 13};
    // strides: {1, 1}
    memory::dims conv5_src_tz = {batch, 384, 13, 13};
    memory::dims conv5_weights_tz = {2, 128, 192, 3, 3};
    memory::dims conv5_bias_tz = {256};
    memory::dims conv5_dst_tz = {batch, 256, 13, 13};
    memory::dims conv5_strides = {1, 1};
    memory::dims conv5_padding = {1, 1};
    std::vector<float> conv5_weights(product(conv5_weights_tz));
    std::vector<float> conv5_bias(product(conv5_bias_tz));
    // create memory for user data
    auto conv5_user_weights_memory
            = memory({{conv5_weights_tz}, dt::f32, tag::goihw}, eng);
    write_to_dnnl_memory(conv5_weights.data(), conv5_user_weights_memory);
    auto conv5_user_bias_memory
            = memory({{conv5_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(conv5_bias.data(), conv5_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto conv5_src_md = memory::desc({conv5_src_tz}, dt::f32, tag::any);
    auto conv5_weights_md = memory::desc({conv5_weights_tz}, dt::f32, tag::any);
    auto conv5_bias_md = memory::desc({conv5_bias_tz}, dt::f32, tag::any);
    auto conv5_dst_md = memory::desc({conv5_dst_tz}, dt::f32, tag::any);
    // create a convolution
    auto conv5_prim_desc = convolution_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::convolution_direct,
            conv5_src_md, conv5_weights_md, conv5_bias_md, conv5_dst_md,
            conv5_strides, conv5_padding, conv5_padding);
    auto conv5_src_memory = conv4_dst_memory;
    if (conv5_prim_desc.src_desc() != conv5_src_memory.get_desc()) {
        conv5_src_memory = memory(conv5_prim_desc.src_desc(), eng);
        net.push_back(reorder(conv4_dst_memory, conv5_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, conv4_dst_memory},
                {DNNL_ARG_TO, conv5_src_memory}});
    }
    auto conv5_weights_memory = conv5_user_weights_memory;
    if (conv5_prim_desc.weights_desc()
            != conv5_user_weights_memory.get_desc()) {
        conv5_weights_memory = memory(conv5_prim_desc.weights_desc(), eng);
        reorder(conv5_user_weights_memory, conv5_weights_memory)
                .execute(s, conv5_user_weights_memory, conv5_weights_memory);
    }
    auto conv5_dst_memory = memory(conv5_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(convolution_forward(conv5_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv5_src_memory},
            {DNNL_ARG_WEIGHTS, conv5_weights_memory},
            {DNNL_ARG_BIAS, conv5_user_bias_memory},
            {DNNL_ARG_DST, conv5_dst_memory}});
    // AlexNet: relu5
    // {batch, 256, 13, 13} -> {batch, 256, 13, 13}
    const float negative5_slope = 0.0f;
    // create relu primitive and add it to net
    auto relu5_prim_desc
            = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference,
                    algorithm::eltwise_relu, conv5_dst_memory.get_desc(),
                    conv5_dst_memory.get_desc(), negative5_slope);
    net.push_back(eltwise_forward(relu5_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, conv5_dst_memory},
            {DNNL_ARG_DST, conv5_dst_memory}});
    // AlexNet: pool5
    // {batch, 256, 13, 13} -> {batch, 256, 6, 6}
    // kernel: {3, 3}
    // strides: {2, 2}
    memory::dims pool5_dst_tz = {batch, 256, 6, 6};
    memory::dims pool5_kernel = {3, 3};
    memory::dims pool5_strides = {2, 2};
    memory::dims pool5_dilation = {0, 0};
    memory::dims pool5_padding = {0, 0};
    std::vector<float> pool5_dst(product(pool5_dst_tz));
    auto pool5_dst_md = memory::desc({pool5_dst_tz}, dt::f32, tag::any);
    // create a pooling
    auto pool5_pd = pooling_forward::primitive_desc(eng,
            prop_kind::forward_inference, algorithm::pooling_max,
            conv5_dst_memory.get_desc(), pool5_dst_md, pool5_strides,
            pool5_kernel, pool5_dilation, pool5_padding, pool5_padding);
    auto pool5_dst_memory = memory(pool5_pd.dst_desc(), eng);
    // create pooling primitive an add it to net
    net.push_back(pooling_forward(pool5_pd));
    net_args.push_back({{DNNL_ARG_SRC, conv5_dst_memory},
            {DNNL_ARG_DST, pool5_dst_memory}});
    // fc6 inner product {batch, 256, 6, 6} (x) {4096, 256, 6, 6}-> {batch,
    // 4096}
    memory::dims fc6_src_tz = {batch, 256, 6, 6};
    memory::dims fc6_weights_tz = {4096, 256, 6, 6};
    memory::dims fc6_bias_tz = {4096};
    memory::dims fc6_dst_tz = {batch, 4096};
    std::vector<float> fc6_weights(product(fc6_weights_tz));
    std::vector<float> fc6_bias(product(fc6_bias_tz));
    // create memory for user data
    auto fc6_user_weights_memory
            = memory({{fc6_weights_tz}, dt::f32, tag::oihw}, eng);
    write_to_dnnl_memory(fc6_weights.data(), fc6_user_weights_memory);
    auto fc6_user_bias_memory = memory({{fc6_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(fc6_bias.data(), fc6_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto fc6_src_md = memory::desc({fc6_src_tz}, dt::f32, tag::any);
    auto fc6_bias_md = memory::desc({fc6_bias_tz}, dt::f32, tag::any);
    auto fc6_weights_md = memory::desc({fc6_weights_tz}, dt::f32, tag::any);
    auto fc6_dst_md = memory::desc({fc6_dst_tz}, dt::f32, tag::any);
    // create a inner_product
    auto fc6_prim_desc = inner_product_forward::primitive_desc(eng,
            prop_kind::forward_inference, fc6_src_md, fc6_weights_md,
            fc6_bias_md, fc6_dst_md);
    auto fc6_src_memory = pool5_dst_memory;
    if (fc6_prim_desc.src_desc() != fc6_src_memory.get_desc()) {
        fc6_src_memory = memory(fc6_prim_desc.src_desc(), eng);
        net.push_back(reorder(pool5_dst_memory, fc6_src_memory));
        net_args.push_back({{DNNL_ARG_FROM, pool5_dst_memory},
                {DNNL_ARG_TO, fc6_src_memory}});
    }
    auto fc6_weights_memory = fc6_user_weights_memory;
    if (fc6_prim_desc.weights_desc() != fc6_user_weights_memory.get_desc()) {
        fc6_weights_memory = memory(fc6_prim_desc.weights_desc(), eng);
        reorder(fc6_user_weights_memory, fc6_weights_memory)
                .execute(s, fc6_user_weights_memory, fc6_weights_memory);
    }
    auto fc6_dst_memory = memory(fc6_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(inner_product_forward(fc6_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, fc6_src_memory},
            {DNNL_ARG_WEIGHTS, fc6_weights_memory},
            {DNNL_ARG_BIAS, fc6_user_bias_memory},
            {DNNL_ARG_DST, fc6_dst_memory}});
    // fc7 inner product {batch, 4096} (x) {4096, 4096}-> {batch, 4096}
    memory::dims fc7_weights_tz = {4096, 4096};
    memory::dims fc7_bias_tz = {4096};
    memory::dims fc7_dst_tz = {batch, 4096};
    std::vector<float> fc7_weights(product(fc7_weights_tz));
    std::vector<float> fc7_bias(product(fc7_bias_tz));
    // create memory for user data
    auto fc7_user_weights_memory
            = memory({{fc7_weights_tz}, dt::f32, tag::nc}, eng);
    write_to_dnnl_memory(fc7_weights.data(), fc7_user_weights_memory);
    auto fc7_user_bias_memory = memory({{fc7_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(fc7_bias.data(), fc7_user_bias_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto fc7_bias_md = memory::desc({fc7_bias_tz}, dt::f32, tag::any);
    auto fc7_weights_md = memory::desc({fc7_weights_tz}, dt::f32, tag::any);
    auto fc7_dst_md = memory::desc({fc7_dst_tz}, dt::f32, tag::any);
    // create a inner_product
    auto fc7_prim_desc = inner_product_forward::primitive_desc(eng,
            prop_kind::forward_inference, fc6_dst_memory.get_desc(),
            fc7_weights_md, fc7_bias_md, fc7_dst_md);
    auto fc7_weights_memory = fc7_user_weights_memory;
    if (fc7_prim_desc.weights_desc() != fc7_user_weights_memory.get_desc()) {
        fc7_weights_memory = memory(fc7_prim_desc.weights_desc(), eng);
        reorder(fc7_user_weights_memory, fc7_weights_memory)
                .execute(s, fc7_user_weights_memory, fc7_weights_memory);
    }
    auto fc7_dst_memory = memory(fc7_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(inner_product_forward(fc7_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, fc6_dst_memory},
            {DNNL_ARG_WEIGHTS, fc7_weights_memory},
            {DNNL_ARG_BIAS, fc7_user_bias_memory},
            {DNNL_ARG_DST, fc7_dst_memory}});
    // fc8 inner product {batch, 4096} (x) {1000, 4096}-> {batch, 1000}
    memory::dims fc8_weights_tz = {1000, 4096};
    memory::dims fc8_bias_tz = {1000};
    memory::dims fc8_dst_tz = {batch, 1000};
    std::vector<float> fc8_weights(product(fc8_weights_tz));
    std::vector<float> fc8_bias(product(fc8_bias_tz));
    // create memory for user data
    auto fc8_user_weights_memory
            = memory({{fc8_weights_tz}, dt::f32, tag::nc}, eng);
    write_to_dnnl_memory(fc8_weights.data(), fc8_user_weights_memory);
    auto fc8_user_bias_memory = memory({{fc8_bias_tz}, dt::f32, tag::x}, eng);
    write_to_dnnl_memory(fc8_bias.data(), fc8_user_bias_memory);
    auto user_dst_memory = memory({{fc8_dst_tz}, dt::f32, tag::nc}, eng);
    write_to_dnnl_memory(user_dst.data(), user_dst_memory);
    // create memory descriptors for convolution data w/ no specified format
    auto fc8_bias_md = memory::desc({fc8_bias_tz}, dt::f32, tag::any);
    auto fc8_weights_md = memory::desc({fc8_weights_tz}, dt::f32, tag::any);
    auto fc8_dst_md = memory::desc({fc8_dst_tz}, dt::f32, tag::any);
    // create a inner_product
    auto fc8_prim_desc = inner_product_forward::primitive_desc(eng,
            prop_kind::forward_inference, fc7_dst_memory.get_desc(),
            fc8_weights_md, fc8_bias_md, fc8_dst_md);
    auto fc8_weights_memory = fc8_user_weights_memory;
    if (fc8_prim_desc.weights_desc() != fc8_user_weights_memory.get_desc()) {
        fc8_weights_memory = memory(fc8_prim_desc.weights_desc(), eng);
        reorder(fc8_user_weights_memory, fc8_weights_memory)
                .execute(s, fc8_user_weights_memory, fc8_weights_memory);
    }
    auto fc8_dst_memory = memory(fc8_prim_desc.dst_desc(), eng);
    // create convolution primitive and add it to net
    net.push_back(inner_product_forward(fc8_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, fc7_dst_memory},
            {DNNL_ARG_WEIGHTS, fc8_weights_memory},
            {DNNL_ARG_BIAS, fc8_user_bias_memory},
            {DNNL_ARG_DST, fc8_dst_memory}});
    // create reorder between internal and user data if it is needed and
    // add it to net after pooling
    if (fc8_dst_memory != user_dst_memory) {
        net.push_back(reorder(fc8_dst_memory, user_dst_memory));
        net_args.push_back({{DNNL_ARG_FROM, fc8_dst_memory},
                {DNNL_ARG_TO, user_dst_memory}});
    }
    //[Execute model]
    for (int j = 0; j < times; ++j) {
        assert(net.size() == net_args.size() && "something is missing");
        for (size_t i = 0; i < net.size(); ++i)
            net.at(i).execute(s, net_args.at(i));
    }
    //[Execute model]
    s.wait();
}
void cnn_inference_f32(engine::kind engine_kind) {
    auto begin = std::chrono::duration_cast<std::chrono::milliseconds>(
            std::chrono::steady_clock::now().time_since_epoch())
                         .count();
    int times = 100;
    simple_net(engine_kind, times);
    auto end = std::chrono::duration_cast<std::chrono::milliseconds>(
            std::chrono::steady_clock::now().time_since_epoch())
                       .count();
    std::cout << "Use time: " << (end - begin) / (times + 0.0)
              << " ms per iteration." << std::endl;
}
int main(int argc, char **argv) {
    return handle_example_errors(
            cnn_inference_f32, parse_engine_kind(argc, argv));
}