Run ResNet-34* SSD Training for Bfloat Using a TensorFlow* Container

ID 679264
Updated 6/15/2022
Version Latest



Pull Command

docker pull intel/object-detection:tf-latest-ssd-resnet34-bfloat16-training


This document has instructions for running ResNet34* SSD BFloat 16 training using Intel® Optimization for TensorFlow*.


ResNet34 SSD training uses the COCO dataset. Use the following instructions to download and preprocess the dataset.

  1. Download and extract the 2017 training images and annotations for the COCO dataset:

    export MODEL_WORK_DIR=$(pwd)
    # Download and extract train images
    # Download and extract annotations
  2. Since we are only using the train and validation dataset in this example, we will create an empty directory and empty annotations json file to pass as the test directories in the next step.

    # Create an empty dir to pass for validation and test images
    mkdir empty_dir
    # Add an empty .json file to bypass validation/test image preprocessing
    cd annotations
    echo "{ \"images\": {}, \"categories\": {}}" > empty.json
    cd ..
  3. Use the TensorFlow models repo scripts to convert the raw images and annotations to the TF records format.

    git clone tf_models
    cd tf_models
    git checkout 7a9934df2afdf95be9405b4e9f1f2480d748dc40
    cd ..
  4. Install the prerequisites mentioned in the TensorFlow models object detection installation doc and run protobuf compilation on the code that was cloned in the previous step.

  5. After your envionment is setup, run the conversion script:

    cd tf_models/research/object_detection/dataset_tools/
    # call script to do conversion
    python --logtostderr \
          --train_image_dir="$MODEL_WORK_DIR/train2017" \
          --val_image_dir="$MODEL_WORK_DIR/empty_dir" \
          --test_image_dir="$MODEL_WORK_DIR/empty_dir" \
          --train_annotations_file="$MODEL_WORK_DIR/annotations/instances_train2017.json" \
          --val_annotations_file="$MODEL_WORK_DIR/annotations/empty.json" \
          --testdev_annotations_file="$MODEL_WORK_DIR/annotations/empty.json" \

    The coco_train.record-*-of-* files are what we will use in this training example. Set the output of the preprocessing script (export DATASET_DIR=$MODEL_WORK_DIR/output) when running quickstart scripts.

For accuracy testing, download the COCO validation dataset, using the instructions here.

Quick Start Scripts

Script name Description
bfloat16_training_demo Executes a demo run with a limited number of training steps to test performance. Set the number of steps using the TRAIN_STEPS environment variable (defaults to 100).
bfloat16_training Runs multi-instance training to convergence. Download the backbone model specified in the instructions below and pass that directory path in the BACKBONE_MODEL_DIR environment variable.
bfloat16_training_accuracy Runs the model in eval mode to check accuracy. Specify which checkpoint files to use with the CHECKPOINT_DIR environment variable.


The model container includes the scripts and libraries needed to run ResNet34 SSD BFloat 16 training. To run one of the quickstart scripts using this container, you'll need to provide volume mounts for the dataset and an output directory where the log files and checkpoints will be written. To run more than one process, set the MPI_NUM_PROCESSES environment variable in the container. Depending on which quickstart script is being run, other volume mounts or environment variables may be required.

When using the quickstart script, the TRAIN_STEPS (defaults to 100) environment variable can be set in addition to the DATASET_DIR and OUTPUT_DIR. The MPI_NUM_PROCESSES will default to 1 if it is not set.

export DATASET_DIR=<path to the COCO training data>
export OUTPUT_DIR=<directory where the log file will be written>
export TRAIN_STEPS=<optional, defaults to 100>
export MPI_NUM_PROCESSES=<optional, defaults to 1>

docker run \
  --env http_proxy=${http_proxy} \
  --env https_proxy=${https_proxy} \
  --volume ${DATASET_DIR}:${DATASET_DIR} \
  --volume ${OUTPUT_DIR}:${OUTPUT_DIR} \
  --privileged --init -it \
  intel/object-detection:tf-latest-ssd-resnet34-bfloat16-training \
  /bin/bash quickstart/

Documentation and Sources

Get Started​
Docker* Repository
Main GitHub*
Release Notes
Get Started Guide

Code Sources
Report Issue

License Agreement

LEGAL NOTICE: By accessing, downloading or using this software and any required dependent software (the “Software Package”), you agree to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party software included with the Software Package. Please refer to the license file for additional details.

View All Containers and Solutions 🡢