Optimize an NCF Inference Container with TensorFlow*

ID 679174
Updated 6/15/2022
Version Latest
Public

author-image

By

Pull Command

docker pull intel/recommendation:tf-latest-ncf-fp32-inference

Description

This document has instructions for running NCF FP32 inference using Intel® Optimization for TensorFlow*.

Download movielens 1M dataset

wget http://files.grouplens.org/datasets/movielens/ml-1m.zip
unzip ml-1m.zip

Set the DATASET_DIR to point to this directory when running NCF.

Quick Start Scripts

Script name Description
fp32_online_inference Runs online inference (batch_size=1).
fp32_batch_inference Runs batch inference (batch_size=256).
fp32_accuracy Measures the model accuracy (batch_size=256).

Docker*

The model container includes the scripts and libraries needed to run NCF FP32 inference. To run one of the quick start scripts using this container, you'll need to provide volume mounts for the dataset and an output directory.

DATASET_DIR=<path to the dataset>
OUTPUT_DIR=<directory where log files will be written>

docker run \
  --env DATASET_DIR=${DATASET_DIR} \
  --env OUTPUT_DIR=${OUTPUT_DIR} \
  --env http_proxy=${http_proxy} \
  --env https_proxy=${https_proxy} \
  --volume ${DATASET_DIR}:${DATASET_DIR} \
  --volume ${OUTPUT_DIR}:${OUTPUT_DIR} \
  --privileged --init -t \
  intel/recommendation:tf-latest-ncf-fp32-inference \
  /bin/bash quickstart/<script name>.sh

Documentation and Sources

Get Started
Docker* Repository
Main GitHub*
Readme
Release Notes
Get Started Guide

Code Sources
Dockerfile
Report Issue

 


License Agreement

LEGAL NOTICE: By accessing, downloading or using this software and any required dependent software (the “Software Package”), you agree to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party software included with the Software Package. Please refer to the license file for additional details.


View All Containers and Solutions 🡢