## Developer Reference

• 2022.1
• 12/20/2021
• Public Content
Contents

# LAPACKE_csysv Example Program in C for Row Major Data Layout

``````/*******************************************************************************
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
LAPACKE_csysv Example.
======================

The program computes the solution to the system of linear equations
with a complex symmetric matrix A and multiple right-hand sides B,
where A is the coefficient matrix:

(  9.99, -4.73) ( -5.68, -0.80) ( -8.94,  1.32) ( -9.42,  2.05)
( -5.68, -0.80) ( -8.01,  4.61) (  1.64, -6.29) (  6.79, -2.17)
( -8.94,  1.32) (  1.64, -6.29) (  9.04,  3.96) ( -4.51, -7.54)
( -9.42,  2.05) (  6.79, -2.17) ( -4.51, -7.54) (  0.40,  4.06)

and B is the right-hand side matrix:

(  5.71, -1.20) (  2.84, -0.18)
( -7.70,  6.47) ( -8.29, -1.72)
(  3.77, -7.40) ( -4.28, -8.25)
( -3.78,  0.33) ( -2.70, -0.39)

Description.
============

The routine solves for X the complex system of linear equations A*X = B,
where A is an n-by-n symmetric matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding
solutions.

The diagonal pivoting method is used to factor A as A = U*D*UT or
A = L*D*LT , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations A*X = B.

Example Program Results.
========================

LAPACKE_csysv (row-major, high-level) Example Program Results

Solution
(  0.13,  0.13) (  0.63,  0.34)
(  0.32, -0.07) (  0.61,  0.21)
( -0.26, -0.44) ( -0.01, -0.10)
( -0.40,  0.51) (  0.21,  0.02)

Details of factorization
(-16.42,  1.69) ( -0.53,  0.35) (  0.36,  0.41) ( -0.78,  0.49)
(  0.00,  0.00) (  3.69,  0.64) (-16.58, -1.61) ( -0.10, -0.65)
(  0.00,  0.00) (  0.00,  0.00) (  1.02, -3.74) ( -0.73, -0.52)
(  0.00,  0.00) (  0.00,  0.00) (  0.00,  0.00) (  9.04,  3.96)

Pivot indices
1     -1     -1      3
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a );

/* Parameters */
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS

/* Main program */
int main() {
/* Locals */
MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
/* Local arrays */
MKL_INT ipiv[N];
MKL_Complex8 a[LDA*N] = {
{ 9.99f, -4.73f}, {-5.68f, -0.80f}, {-8.94f,  1.32f}, {-9.42f,  2.05f},
{ 0.00f,  0.00f}, {-8.01f,  4.61f}, { 1.64f, -6.29f}, { 6.79f, -2.17f},
{ 0.00f,  0.00f}, { 0.00f,  0.00f}, { 9.04f,  3.96f}, {-4.51f, -7.54f},
{ 0.00f,  0.00f}, { 0.00f,  0.00f}, { 0.00f,  0.00f}, { 0.40f,  4.06f}
};
MKL_Complex8 b[LDB*N] = {
{ 5.71f, -1.20f}, { 2.84f, -0.18f},
{-7.70f,  6.47f}, {-8.29f, -1.72f},
{ 3.77f, -7.40f}, {-4.28f, -8.25f},
{-3.78f,  0.33f}, {-2.70f, -0.39f}
};
/* Executable statements */
printf( "LAPACKE_csysv (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_csysv( LAPACK_ROW_MAJOR, 'U', n, nrhs, a, lda, ipiv,
b, ldb );
/* Check for the exact singularity */
if( info > 0 ) {
printf( "The element of the diagonal factor " );
printf( "D(%i,%i) is zero, so that D is singular;\n", info, info );
printf( "the solution could not be computed.\n" );
exit( 1 );
}
/* Print solution */
print_matrix( "Solution", n, nrhs, b, ldb );
/* Print details of factorization */
print_matrix( "Details of factorization", n, n, a, lda );
/* Print pivot indices */
print_int_vector( "Pivot indices", n, ipiv );
exit( 0 );
} /* End of LAPACKE_csysv Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}

/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) {
MKL_INT j;
printf( "\n %s\n", desc );
for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
printf( "\n" );
}``````

#### Product and Performance Information

1

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.