Generalizing to Unseen Domains Via Adversarial Data Augmentation

author-image

By

We are concerned with learning models that generalize well to different unseen domains. We consider a worst-case formulation over data distributions that are near the source domain in the feature space. Only using training data from the source domain, we propose an iterative procedure that augments the dataset with examples from a fictitious target domain that is "hard" under the current model. We show that our iterative scheme is an adaptive data augmentation method where we append adversarial examples at each iteration. For softmax losses, we show that our method is a data-dependent regularization scheme that behaves differently from classical regularizers (e.g., ridge or lasso) that regularize towards zero. On digit recognition and semantic segmentation tasks, we empirically observe that our method learns models that improve performance across a priori unknown data distributions.